• Title/Summary/Keyword: Advanced velocity

Search Result 1,108, Processing Time 0.024 seconds

High Velocity Impact Characteristics of Shear Thickening Fluid Impregnated Kevlar Fabric

  • Park, Yurim;Baluch, Abrar H.;Kim, YunHo;Kim, Chun-Gon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.140-145
    • /
    • 2013
  • The development of high performance fabrics have advanced body armor technology and improved ballistic performance while maintaining flexibility. Utilization of the shear thickening phenomenon exhibited by Shear Thickening Fluids (STF) has allowed further enhancement without hindering flexibility of the fabric through a process of impregnation. The effect of STF impregnation on the ballistic performance of fabrics has been studied for impact velocities below 700 m/s. Studies of STF-impregnated fabrics for high velocity impacts, which would provide a transition to significantly higher velocity ranges, are lacking. This study aims to investigate the effect of STF impregnation on the high velocity impact characteristics of Kevlar fabric by effectively dispersing silica nanoparticles in a suspension, impregnating Kevlar fabrics, and performing high velocity impact experiments with projectile velocities in the range of 1 km/s to compare the post impact characteristics between neat Kevlar and impregnated Kevlar fabrics. 100 nm diameter silica nanoparticles were dispersed using a homogenizer and sonicator in a solution of polyethylene glycol (PEG) and diluted with methanol for effective impregnation to Kevlar fabric, and the methanol was evaporated in a heat oven. High velocity impact of STF-impregnated Kevlar fabric revealed differences in the post impact rear formation compared to neat Kevlar.

Design of Velocity Ripple Controller using Phase Compensation Feedforward Control (피드포워드 제어를 이용한 위상차 보정 속도리플 제어기의 설계)

  • Tae, Won-Hyoung;Kim, Jung-Han;Shim, Jong-Youp;Oh, Jeong-Seok;Song, Jun-Yeob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.705-713
    • /
    • 2014
  • In this paper, we propose a novel velocity ripple controller using phase compensation feedforward control. Velocity ripples result in many kinds of performance degradations in manufacturing machines, especially such as ultra-precision roll lathes. The generation of velocity ripple in constant velocity control comes from various causes, such as electrical torque ripples, mechanical worn out, inconsistent mass center, etc. Conventional researches about ripple is mainly for reducing torque ripple in actuator level, which is only one of reasons for velocity ripples, so in this study, we focus on eliminating velocity ripples in upper level controller using phase compensation feedforward controller. The proposed algorithm is composed of several modules, such as ripple extractor, phase adjuster and phase follower etc. The suggested algorithm can be easily extended, and it shows a superior performance in the experiments of ultra-precision roll lathes.

Quantitative observation of co-current stratified two-phase flow in a horizontal rectangular channel

  • Lee, Seungtae;Euh, Dong-Jin;Kim, Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.267-283
    • /
    • 2015
  • The main objective of this study is to investigate experimentally the two-phase flow characteristics in terms of the direct contact condensation of a steam-water stratified flow in a horizontal rectangular channel. Experiments were performed for both air-water and steam-water flows with a cocurrent flow configuration. This work presents the local temperature and velocity distributions in a water layer as well as the interfacial characteristics of both condensing and noncondensing fluid flows. The gas superficial velocity varied from 1.2 m/s to 2.0 m/s for air and from 1.2 m/s to 2.8 m/s for steam under a fixed inlet water superficial velocity of 0.025 m/s. Some advanced measurement methods have been applied to measure the local characteristics of the water layer thickness, temperature, and velocity fields in a horizontal stratified flow. The instantaneous velocity and temperature fields inside the water layer were measured using laser-induced fluorescence and particle image velocimetry, respectively. In addition, the water layer thickness was measured through an ultrasonic method.

High-Velocity Deformation Analysis Using the Rigid-Plastic Finite Elemement Method Considering Inertia Effect (관성효과가 고려된 강소성 유한요소법을 이용한 고속변형해석)

  • Yoo, Yo-Han;Park, Khun;Yang, Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1562-1572
    • /
    • 1996
  • The rigid-plastic finite element formulation including the inertia force is derived and then the rigid-plastic finite elemnt program considering the inertia effect is developed. In order to consider the strain hardening, strain rate hardening and thermal softening effects which are frequentrly observed in high-velocity deformation phenomena, the Johnson-Cook constitutive odel is applied. The developed program is used to simulate two high-velocity deformation problemss ; rod impact test and hdigh-velocity compression precess. As a result of rod impact test simulation, it is found that the siulated result has a good agreement with the experimental observation. Through the high-velocity compression process simulation. it is also found that the accuracy of the simulated results is dependent upon the time increment size and mesh size.

Control of Motion of Charged Micro-Particle by In-plane Field (수평전기장에 의해 대전된 입자의 운동제어)

  • Baik, In-Su;Jung, Byoung-Sun;Lim, Young-Jin;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.514-517
    • /
    • 2004
  • We have studied motion of micro-particle immersed in liquid crystal (LC) controlled by in-plane field, which is an important technology in the electro-phoretic display (EPD). In the EPD on and off states are decided by movement of these charged particles and response time is influenced by moving velocity of charged particles. In addition, the velocity can be controlled by intensity of applied voltage such that the higher the applied voltage, the faster velocity of particles become. In this study, we investigated particles's motion as functions of applied voltage, temperature of LC, rubbing direction,

  • PDF

Cosmological Information from the Small-scale Redshift Space Distortions

  • Tonegawa, Motonari;Park, Changbom;Zheng, Yi;Kim, Juhan;Park, Hyunbae;Hong, Sungwook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.52.3-52.3
    • /
    • 2019
  • We present our first attempt at understanding the dual impact of the large-scale density and velocity environment on the formation of very first astrophysical objects in the Universe. Following the recently developed quasi-linear perturbation theory on this effect, we introduce the publicly available initial condition generator of ours, BCCOMICS (Baryon Cold dark matter COsMological Inital Condition generator for Small scales), which provides so far the most self-consistent treatment of this physics beyond the usual linear perturbation theory. From a suite of uniform-grid simulations of N-body+hydro+BCCOMICS, we find that the formation of first astrophysical objects is strongly affected by both the density and velocity environment. Overdensity and streming-velocity (of baryon against cold dark matter) are found to give positive and negative impact on the formation of astrophysical objects, which we quantify in terms of various physical variables.

  • PDF

Application Advanced One-Sided Stress Wave Velocity Measurement in Concrete (콘크리트에서의 One-Sided 응력파 속도 측정 기법의 적용에 관한 연구)

  • ;;J.S.Popovice;J.D.Achenbach
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.544-550
    • /
    • 1997
  • In this study, the advanced on-sided stress wave velocity measurement method was applied to investigate the effects of composition, age and moisture content in concrete. Two concrete specimens that have different composition were used to figure out the change of the Longitudinal and Surface wave velocity due to different composition. The other concrete specimen was cast and the Longitudinal and Surface wave velocity was monitored during curing process. After 28-day old, the effect of moisture content in the concrete specimen to the stress wave velocity is presented in this paper during the time period 43-74 days after casting. For drying process. an aggregate drying oven was used. A conventional ultrasonic through transmission method was used to compare with the results determined by the one-sided method.

  • PDF

An Extended Numerical Calibration Method for an Electrochemical Probe in Thin Wavy Flow with Large Amplitude Waves

  • Park, Ki-Yong;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.553-558
    • /
    • 1998
  • The calibrating method for an electrochemical Probe, neglecting the effect of the normal velocity on the mass transport, can cause large errors when applied to the measurement of wall shear rates in thin wavy flow with large amplitude waves. An extended calibrating method is developed to consider the contributions of the normal velocity. The inclusion of the turbulence-induced normal velocity term is found to have a negligible effect on the mass transfer coefficient. The contribution wave-induced normal velocity can be classified on the dimensionless parameter V. If V above a critical value of V, $V_{crit}$, the effects of the wave-induced normal velocity become larger with an increase in V. IF V its effects negligible for V < $V_{crit}$. The unknown shear rate is numerically determined by solving the 2-D mass transport equation inversely. The president inverse method can predict the unknown shear rate more accurately in thin wavy flow with large amplitude waves than the previous method.

  • PDF

Statistical analysis and modelization of tool life and vibration in dry face milling of AISI 52100 STEEL in annealed and hardened conditions

  • Benghersallah, Mohieddine;Medjber, Ali;Zahaf, Mohamed Zakaria;Tibakh, Idriss;Amirat, Abdelaziz
    • Advances in materials Research
    • /
    • v.9 no.3
    • /
    • pp.189-202
    • /
    • 2020
  • The objective of the present work is to investigate the effect of cutting parameters (Vc, fz and ap) on tool life and the level of vibrations velocity in the machined part during face milling operation of hardened AISI 52100 steel. Dry-face milling has been achieved in the annealed (28 HRc) and quenched (55 HRc) conditions using multi-layer coating micro-grain carbide inserts. Statistical analysis based on the Response surface methodology (RSM) and ANOVA analysis have been conducted through a plan of experiments methodology using a reduced Taguchi table (L9) in order to obtain engineering models for tool life and vibration velocity in the workpiece for both heat treatment conditions. The results show that the cutting speed has a dominant influence on tool life for both soft and hard part. Cutting speed and feed per tooth is the most significant parameters for vibration levels. Comparing the experimental values with those predicted by the developed engineering models of tool life and levels of vibrations velocity, a good correlation has been obtained (between 97% and 99%) in annealed and hard conditions.

Numerical Analysis of Unsteady Viscous Flow Through a Weis-Fogh Type Ship Propulsion Mechanism Using the Advanced Vortex Method

  • Ro Ki-Deok;Kang Myeong-Hun;Kong Tae-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.769-778
    • /
    • 2005
  • The velocity and pressure fields of a ship's Weis-Fogh type propulsion mechanism are studied in this paper using an advanced vortex method. The wing (NACA0010 airfoil) and channel are approximated by source and vortex panels. and free vortices are introduced away from the body surfaces. The viscous diffusion of fluid is represented using the core-spreading model to the discrete vortices. The velocity is calculated on the basis of the generalized Biot-Savart law and the pressure field is calculated from an integral, based on the instantaneous velocity and vorticity distributions in the flow field. Two-dimensional unsteady viscous flow calculations of this propulsion mechanism are shown. and the calculated results agree qualitatively with the measured thrust and drag due to un-modeled large fluctuations in the measured data.