• Title/Summary/Keyword: Advanced speed information system

Search Result 257, Processing Time 0.036 seconds

Development of the VR Simulation System for the Dynamic Characteristics of the Adaptive Cruise Controlled Vehicle (ACC 차량의 동특성 해석을 위한 VR 시뮬레이션 시스템 개발)

  • Kwon, Seong-Jin;Jang, Suk;Yoon, Kyoung-Han;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.163-172
    • /
    • 2004
  • Nowadays, to analyze the dynamic characteristics of the automotive driving system, the computer simulation linked up with VR(Virtual Reality) technology is treated as the useful method with the improvement of computing ability. In this paper, the VR simulation system has been developed to investigate the driving characteristics of the ASV(Advanced Safety Vehicle) equipped with an ACC(Adaptive Cruise Control) system. For the purpose, VR environment which generates 3D graphic and sound information of the vehicle, the road, the facilities, and the terrain has been organized for the driving reality. Mathematical models of vehicle dynamic analysis including the ACC model have been constructed for computer simulation. The ACC modulates the throttle and brake functions to regulate the vehicle speed so that vehicles could keep proper spacing. Also, the real-time simulation algorithm synchronizes vehicle dynamic simulation with the graphic rendering. With the developed VR simulation system, simple scenarios are applied to analyze the dynamic characteristics. It is shown that the VR simulation system could be useful to evaluate the adaptive cruise controlled vehicle on various driving conditions.

Design and Implementation of adaptive traffic signal simulator system for U-Traffic (U-Traffic의 적응형 교통 신호 시뮬레이터 구축에 대한 연구)

  • Jang, Won-Tae;Kang, Woo-Suk
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.480-487
    • /
    • 2012
  • In Busan, the structural limitations of the road, is causing severe traffic congestion and low speed of the vehicle. So the existing traffic control system needs improvements to its structure. A study on Optimal Traffic Signal System and Improvement for User Oriented Public Transit Service are required. U-city is a city or region with ubiquitous information technology. All information systems are linked, and virtually everything is linked to an information technologies. U-Traffic goal is to maximize of traffic information services based on advanced information technology to integrate of transportation infrastructure. The objectives of this research are : a vehicle detection method through a variety of sensors, an algorithm of the traffic signal system, a design and implementation a simulator to compare between the fixed traffic signal and adaptive traffic signal system. This simulator will have allowed analysis techniques for the study of traffic control. Results of simulator test shows that traffic congestion can be some reduce.

Performance Analysis of a Concatenated Coded DS/CDMA System in Asynchronous Rayleigh Fading Channels (비동기 레일리 감쇄 채널에서 쇄상부호 직접수열 부호분할 다중접속 시스템의 성능분석)

  • Kim, Kwang-Soon;Song, Iick-Ho;Yoon, Seok-Ho;Kim, Hong-Gil;Lee, Yong-Up
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.9
    • /
    • pp.1-8
    • /
    • 1999
  • In this paper, we propose and analyze a concatenated coding scheme for DS/CDMA systems in asynchronous channels. In the concatenated coding, bandwidth efficient $2^{2L-2}$-state ${\frac{L}{L+1}}$-rate 2-MTCM with biorthogonal signal constellation is used for the inner code, and $(2^{L-1},\;{\lceil}\frac{2^{L-1}}{L/2}{\rceil})$ RS code is use for the outer code. It is shown that we can get considerable performance gain over the uncoded system without sacrificing the data transmission rate. The proposed system can be used as a coding scheme for reliable and high speed integrated information services of mobile communication systems.

  • PDF

A Study on an Advanced Evaluation Method for Dynamic Signature Verification System

  • Kim, Jin-Whan;Cho, Jae-Hyun;Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.140-144
    • /
    • 2010
  • This paper is a research on an evaluating method for the dynamic signature verification system. It is described about various factors such as error rate, the size of signature verification engine, the size of the characteristic vectors of a signature, the ability to distinguish similar signatures, the processing speed of signature verification and so on. This study identifies factors to consider in evaluating signature verification systems comprehensively and objectively without an officially approved signature database, examines the meaning of each of the factors, and proposes criteria for evaluating and analyzing the factors.

An Interior Point Method based Reactive Optimal Power Flow Incorporating Margin Enhancement Constraints

  • Song Hwa-Chang;Lee Byong-Jun;Moon Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.152-158
    • /
    • 2005
  • This paper describes a reactive optimal power flow incorporating margin enhancement constraints. Margin sensitivity at a steady-state voltage instability point is calculated using invariant space parametric sensitivity, and it can provide valuable information for selection of effective control parameters. However, the weakest buses in neighboring regions have high margin sensitivities within a certain range. Hence, the control determination using only the sensitivity information might cause violation of operational limits of the base operating point, at which the control is applied to enhance voltage stability margin in the direction of parameter increase. This paper applies an interior point method (IPM) to solve the optimal power flow formulation with the margin enhancement constraints, and shunt capacitances are mainly considered as control variables. In addition, nonlinearity of margin enhancement with respect to control of shunt capacitance is considered for speed-up control determination in the numerical example using the IEEE 118-bus test system.

Vibration Measurement and Flutter Suppression Using Patch-type EFPI Sensor System

  • Kim, Do-Hyung;Han, Jae-Hung;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.17-26
    • /
    • 2005
  • An optical phase tracking technique for an extrinsic Fabry-Perot interferometer (EFPI) is proposed in order to overcome interferometric non-linearity. Basic idea is utilizing strain-rate information, which cannot be easily obtained from an EFPI sensor itself. The proposed phase tracking system consists of a patch-type EFPI sensor and a simple on-line phase tracking logic. The patch-type EFPI sensor comprises an EFPI and a piezoelectric patch. An EFPI sensor itself has non-linear behavior due to the interferometric characteristics, and a piezoelectric material has hysteresis. However, the composed patch-type EFPI sensor system overcomes the problems that can arise when they are used individually. The dynamic characteristics of the proposed phase tracking system were investigated, and then the patch-type EFPI sensor system was applied to the active suppression of flutter, dynamic aeroelastic instability, of a swept-back composite plate structure. The proposed system has effectively reduced the amplitude of the flutter mode, and increased flutter speed.

Prediction of Speed by Rain Intensity using Road Weather Information System and Vehicle Detection System data (도로기상정보시스템(RWIS)과 차량검지기(VDS) 자료를 이용한 강우수준별 통행속도예측)

  • Jeong, Eunbi;Oh, Cheol;Hong, Sungmin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.4
    • /
    • pp.44-55
    • /
    • 2013
  • Intelligent transportation systems allow us to have valuable opportunities for collecting reliable wide-area coverage traffic and weather data. Significant efforts have been made in many countries to apply these data. This study identifies the critical points for classifying rain intensity by analyzing the relationship between rainfall and the amount of speed reduction. Then, traffic prediction performance by rain intensity level is evaluated using relative errors. The results show that critical points are 0.4mm/5min and 0.8mm/5min for classifying rain intensity (slight, moderate, and heavy rain). The best prediction performance is observable when previous five-block speed data is used as inputs under normal weather conditions. On the other hand, previous two or three-block speed data is used as inputs under rainy weather conditions. The outcomes of this study support the development of more reliable traffic information for providing advanced traffic information service.

Hot Wire Wind Speed Sensor System Without Ambient Temperature Compensation (주변 온도보상이 필요 없는 열선식 풍속 센서 시스템)

  • Sung, Junkyu;Lee, Keunwoo;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1188-1194
    • /
    • 2019
  • Among the many ways to measure the flow of fluid the hot air wind speed sensor is a device for measuring the speed or temperature by heat transfer of a fluid. However, the hot wire wind speed sensor is sensitive to external environmental factors, and has a disadvantage of inaccuracy due to ambient temperature, humidity, and signal noise. In order to compensate for this disadvantage, advanced technology has been introduced by adding temperature compensation circuits, but it is expensive. In order to solve this problem, this paper studies the wind speed sensor that does not need temperature compensation. Heated wind speed sensors are very vulnerable to the ambient temperature, which is generated by electronic circuits, even among external environmental factors. in order to improve this, the auxiliary heating element is additionally installed in the heating element to control a constant temperature difference between the auxiliary heating element and the heating element.

ADPSS Channel Interpolation and Prediction Scheme in V2I Communication System (V2I 통신 시스템에서 ADPSS 채널 보간과 예측 기법)

  • Chu, Myeonghun;Moon, Sangmi;Kwon, Soonho;Lee, Jihye;Bae, Sara;Kim, Hanjong;Kim, Cheolsung;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.34-41
    • /
    • 2017
  • Vehicle to Infrastructure(V2I) communication means the technology between the vehicle and the roadside unit to provide the Intelligent Transportation Systems(ITS) and Telematic services. The vehicle collects information about the probe data through the evolved Node B(eNodeB) and after that eNodeB provides road conditions or traffic information to the vehicle. To provide these V2I communication services, we need a link adaptation technology that enables reliable and higher transmission rate. The receiver transmits the estimated Channel State Information(CSI) to transmitter, which uses this information to enable the link adaptation. However, due to the rapid channel variation caused by vehicle speed and the processing delay between the layers, the estimated CSI quickly becomes outdated. For this reason, channel interpolation and prediction scheme are needed to achieve link adaptation in V2I communication system. We propose the Advanced Discrete Prolate Spheroidal Sequence(ADPSS) channel interpolation and prediction scheme. The proposed scheme creates an orthonomal basis, and uses a correlation matrix to interpolate and predict channel. Also, smoothing is applied to frequency domain for noise removal. Simulation results show that the proposed scheme outperforms conventional schemes with the high speed and low speed vehicle in the freeway and urban environment.

High Speed Interconnetion Network for Interworking Gateway of Heterogeneous Networks (이종망간의 상호연동 거이트웨이 시스템을 위한 내부고속연동망)

  • Kim, Dong-Won;Sin, Hyeon-Sik;Ryu, Won;Lee, Hyun-Woo;Jun, Kyung-Pyo;Bae, Hyeon-Deok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.2
    • /
    • pp.499-514
    • /
    • 1997
  • This paper proprses the architeecture of an interconnection network for Advanced Information Communi-cation Procssing System(AICPS)developde for prividing open information communication servies on a variety of heterogeneous networks.The proposed Interconnection network,called High Speed Swiching Fabric(HSSF),has been designed by a common bus.It can handile 32 i/O channels,each of which uses serial communication method using 100Mbps TAXI.The switching bandwidth of the common bus is 640Mvps.Each I/O channel can be alloted about 20Mbps bandwidth in steady state,and therefore it's sufficient bandwidth is able to interwork with ISDN and Internet services, as well as PSTN. HSSF is composed of the switching board assembly,the subscriber,I/O board assemly,and the backplane board assembly.An attached node takes in the network adapter board assembly to adapt the high speed interworking protocol.For reliability,HSSF is duplicated with load-sharing method.

  • PDF