• Title/Summary/Keyword: Advanced power system

Search Result 2,179, Processing Time 0.028 seconds

A Study on Wear-type Defects of Part and Materials in Wind Power Generation (풍력발전기 부품소재의 마모결함 검출에 관한 연구)

  • Kim, Sung-Hyun;Choi, Seung-Hyun;Jung, Na-Ra;Yoon, Cheon-Han;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.989-995
    • /
    • 2013
  • Unlike fossil-or nuclear fuel-based power generation, wind power generation using inexhaustible wind energy is a pollution-free, hazardless power generation method. In this study, ultrasound thermography is used for fabricating specimens of wind power generator bearings and wind power generator supplement flanges, and an optimally designed ultrasound horn and ultrasound excitation system are used for detecting damage to part materials of a wind power generation setup. In addition, thermal flow analysis and ultrasonic thermography imaging are comparatively analyzed for improving the detection reliability in terms of surface and internal defects of part materials and for verifying the developed system's field applicability and reliability.

Advanced Railway Power Quality Detecting Algorithm Using a Combined TEO and STFT Method

  • Yoo, Je-Ho;Shin, Seung-Kwon;Park, Jong-young;Cho, Soo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2442-2447
    • /
    • 2015
  • Because an electric railway vehicle is a large scale moving load, it can cause various kinds of power quality problems in the railroad power system. The power quality impacts are considered as the strong instantaneous stresses to the related power systems and can cause an accelerating aging and a malfunction of the power supplying components. Therefore, it is necessary to detect the small and intermittent symptoms mixed in the voltage waveform. However, they cannot be detected by the triggering functions of the existing power analyzers installed in the railway systems. This paper will examine the drawback of some fast detection tools and propose an advanced detecting and analyzing method based on a combined TEO and STFT algorithm.

Systems Engineering Approach to develop the FPGA based Cyber Security Equipment for Nuclear Power Plant

  • Kim, Jun Sung;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.73-82
    • /
    • 2018
  • In this work, a hardware based cryptographic module for the cyber security of nuclear power plant is developed using a system engineering approach. Nuclear power plants are isolated from the Internet, but as shown in the case of Iran, Man-in-the-middle attacks (MITM) could be a threat to the safety of the nuclear facilities. This FPGA-based module does not have an operating system and it provides protection as a firewall and mitigates the cyber threats. The encryption equipment consists of an encryption module, a decryption module, and interfaces for communication between modules and systems. The Advanced Encryption Standard (AES)-128, which is formally approved as top level by U.S. National Security Agency for cryptographic algorithms, is adopted. The development of the cyber security module is implemented in two main phases: reverse engineering and re-engineering. In the reverse engineering phase, the cyber security plan and system requirements are analyzed, and the AES algorithm is decomposed into functional units. In the re-engineering phase, we model the logical architecture using Vitech CORE9 software and simulate it with the Enhanced Functional Flow Block Diagram (EFFBD), which confirms the performance improvements of the hardware-based cryptographic module as compared to software based cryptography. Following this, the Hardware description language (HDL) code is developed and tested to verify the integrity of the code. Then, the developed code is implemented on the FPGA and connected to the personal computer through Recommended Standard (RS)-232 communication to perform validation of the developed component. For the future work, the developed FPGA based encryption equipment will be verified and validated in its expected operating environment by connecting it to the Advanced power reactor (APR)-1400 simulator.

Development of Dynamic Simulation Software for Power Plant and its Application to Once-Through Boiler (플랜트 동특성 해석용 소프트웨어 개발 및 초임계압 관류형 보일러에의 적용)

  • Lee, Ki-Hyun;Lee, Dong-Su;Cho, Chang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.656-661
    • /
    • 2000
  • In the recent trend of electric power supply market, a variable pressure operation supercritical once-through steam generator is highlighted as a thermal power plant for cycling load because of its superiority in load regulation. Almost all thermal power plants of the future are expected to be variable pressure operation supercritical once-through units. APESS(Advanced Plant Engineering & Simulation System) is a dynamic simulation software for power plant which is under being developed by Korea Heavy Industries & Construction Co., Ltd. This paper present the introduction of APESS and the result of simulation for variable pressure operation supercritical once-through steam generator.

  • PDF

Development of Axial Power Distribution Monitoring System Using Two-Level Encore Detector (상하부 2개의 노외계측기를 이용한 축방향 출력분포 감시계통 개발)

  • Chi, Sung-Goo;Song, Jae-Woong;Ahn, Dwak-Hwan;Kuh, Jung-Eui
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.294-301
    • /
    • 1989
  • The Axial Power Distribution Monitoring System(APDMS) program was developed to calculate a detailed axial power distribution using two-level excore detector, cold leg temperature and control rod position signals. The unnormalized two-level excore detector signals were corrected for the rod shadowing factor determined by control rod position and for the temperature shadowing factor calculated based on cold leg temperature. A shape annealing matrix was then applied to the corrected excore detector response to yield peripheral power. After the core average power was obtained using linear relationship bet-ween core average and peripheral power, the boundary point power correction coefficient was applied to core average power in order to obtain boundary power for both upper and lower core axial boundaries. Then, the axial power distribution was synthesized by spline approximation. In spite of burnup, power level, control rod postion and axial offset changes, the comparisons of axial power distributions between BOXER simulation program and APDMS results showed good agreements within 5% root mean square error for Kori Unit 3 Cycle 4.

  • PDF

Design of a direct-cycle supercritical CO2 nuclear reactor with heavy water moderation

  • Petroski, Robert;Bates, Ethan;Dionne, Benoit;Johnson, Brian;Mieloszyk, Alex;Xu, Cheng;Hejzlar, Pavel
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.877-887
    • /
    • 2022
  • A new reactor concept is described that directly couples a supercritical CO2 (sCO2) power cycle with a CO2-cooled, heavy water moderated pressure tube core. This configuration attains the simplification and economic potential of past direct-cycle sCO2 concepts, while also providing safety and power density benefits by using the moderator as a heat sink for decay heat removal. A 200 MWe design is described that heavily leverages existing commercial nuclear technologies, including reactor and moderator systems from Canadian CANDU reactors and fuels and materials from UK Advanced Gas-cooled Reactors (AGRs). Descriptions are provided of the power cycle, nuclear island systems, reactor core, and safety systems, and the results of safety analyses are shown illustrating the ability of the design to withstand large-break loss of coolant accidents. The resulting design attains high efficiency while employing considerably fewer systems than current light water reactors and advanced reactor technologies, illustrating its economic promise. Prospects for the design are discussed, including the ability to demonstrate its technologies in a small (~20 MWe) initial system, and avenues for further improvement of the design using advanced technologies.

Numerical simulation of natural convection around the dome in the passive containment air-cooling system

  • Chunhui Dong;Shikang Chen;Ronghua Chen;Wenxi Tian;Suizheng Qiu;G.H. Su
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2997-3009
    • /
    • 2023
  • The Passive containment Air-cooling System (PAS) can effectively remove the decay heat of the modular small nuclear reactor after an accident. The details of natural convection around the dome, which is a key part of PAS, were investigated numerically in the present study. The thermal dynamics around the dome were studied through the temperature, pressure and velocity contours and the streamlines. Additionally, the formation of the buoyant plume at the top of the dome was investigated. The results show that with the increase of Ra, the lift-off point moves toward the bottom of the dome, and the eddy under the buoyant plume grows larger gradually, which enhances the heat transfer. And the heat transfer along the dome surface with different truncation angles was investigated. As the angle increases, the heat transfer coefficient becomes stronger as well. Consequently, a newly developed heat transfer correlation considering the influence of truncation angle for the dome is proposed based on the simulated results. This study could provide a better understanding of natural convection around the dome of PAS and the proposed correlation could also offer more predictive value in the improvement of nuclear safety.

Water film covering characteristic on horizontal fuel rod under impinging cooling condition

  • Penghui Zhang;Bowei Wang;Ronghua Chen;G.H. Su;Wenxi Tian;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4329-4337
    • /
    • 2022
  • Jet impinging device is designed for decay heat removal on horizontal fuel rods in a low temperature heating reactor. An experimental system with a fuel rod simulator is established and experiments are performed to evaluate water film covering capacity, within 0.0287-0.0444 kg/ms mass flow rate, 0-164.1 kW/m2 heating flux and 13.8-91.4℃ feeding water temperature. An effective method to obtain the film coverage rate by infrared equipment is proposed. Water film flowing patterns are recoded and the film coverage rates at different circumference angles are measured. It is found the film coverage rate decreases with heating flux during single-phase convection, while increases after onset of nucleate boiling. Besides, film coverage rate is found affected by Marangoni effect and film accelerating effect, and surface wetting is significantly facilitated by bubble behavior. Based on the observed phenomenon and physical mechanism, dry-out depth and initial dry-out rate are proposed to evaluate film covering potential on a heating surface. A model to predict film coverage rate is proposed based on the data. The findings would have reliable guide and important implications for further evaluation and design of decay heat removal system of new reactors, and could be helpful for passive containment cooling research.

Development of fault diagnosis fuzzy expert system for advanced control system (고급 분산 제어 시스템을 위한 고장 진단 퍼지 전문가 시스템의 개발)

  • 변승현;박세화;허윤기;서창준;이재혁;김병국;박동조;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.959-964
    • /
    • 1993
  • We developed fault diagnosis fuzzy expert system for ACS(Advanced Control System). ACS is a DCS(Distributed Control System) with advanced control algorithm fault tolerance capabilities, fault diagnosis functions, and so on. Fuzzy expert system developed for an ACS in this paper gives an operator alarm signal depending on the state of process value and manipulated value, and the cause of alarm in real time. Simple experiment result with several rules for the-fault-diagnosis of drum level loop in Seoul-Power-Plant.

  • PDF