• Title/Summary/Keyword: Advanced oxidation process

Search Result 366, Processing Time 0.04 seconds

Effect of Ozone and UV Treatment of Groundwater on the Quality of Wine (지하수의 오존과 UV처리가 탁주의 품질특성에 미치는 영향)

  • Park, Young-Gyu;Kim, Hee-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.255-261
    • /
    • 2004
  • Experiments using ozone are presented for the water purification and wine quality improvement. Advanced oxidation process results reveal water treatment by both ozone and UV radiation increases quality of the takju prepared using a Korean conventional nuruk than with ozone-treatment or convectional method only. Water quality was enhanced by ozone treatment, resulting in 85% reduction of hardness, and 30% increase in total glucose produced due to increased conductivity and biodegradability of water. Although initially decreased slightly due to oxidation of takju, higher than expected ethanol production was observed, with ozone plus UV treatment resulting in 20% higher production compared with other methods.

Performance Evaluation of Advanced Municipal Wastewater Tretment by Phased Isolation Intrachannel Clarifier Ditch (침전지내장형 상분리 산화구공정에 의한 하수 고도처리특성 평가)

  • Hong, Ki-Ho;Chang, Duk;Han, Sang-Bae
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.563-570
    • /
    • 2004
  • Phased isolation intrachannel clarifier ditch process developed in this study is an enhanced biological nutrient removal process employing two ditches with intrachannel clarifiers. Bench-scale phased isolation ditch process was used to evaluate the system performance on municipal wastewater and detailed assessment of internal behavior in a ditch and each reactions. When the system was operated at the HRTs of 6~12hours, SRTs of 9~31 days, and cycle times of 4hours, the system showed removals of BOD, TN, and TP as high as 88~97%, 73~78%, and 65~90%, respectively. The internal behavior were well matched on each reactions such as nitrification, denitrification, and phosphorus release and uptake. As the SRT became longer, TN removal increased gradually, whereas TP removal decreased contrarily. However, the system was capable of producing an effluent TP concentration 1mg/L or less even at longer SRTs except the case of solids discharge by malfunction of intra-clarifier occurred by its geometrical limit. The system performance slightly decreased by hydraulic shock loading(increasing of influent flowrate and decreasing of system HRT). However, the higher system performance could be achieved again after four cycles. Thus, the system reliability could be successfully achieved short-term hydraulic shock loading that occurred in medium- and small-sized wastewater treatment plants suffering fluctuation of influent quality and flowrate during wet season.

Experimental study of degradation and biodegradability of oxytetracycline antibiotic in aqueous solution using Fenton process

  • Zouanti, Mustapha;Bezzina, Mohamed;Dhib, Ramdhane
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.316-323
    • /
    • 2020
  • The degradation of aqueous oxytetracycline (OTC) from an aqueous solution antibiotic using H2O2/Fe2+ process was studied in one 1 L batch chemical reactor. The extent of OTC degradation (20 mg/L) was investigated from a known initial pH solution, temperature and the type of catalyst (Fe2+, Fe3+) and for various initial concentrations of OTC, H2O2 and Fe2+. The degradation efficiency achieved was found to be very important (90.82% and 90.63%) at initial pH solution of 3 and 4, respectively. However, the type of catalyst and the reaction temperature had a slight impact on the final degradation of OTC. The results showed that the OTC removal increased with increasing initial H2O2 concentration in the range of 70 to 150 mg/L and initial Fe2+ concentrations in the range of 2 to 5 mg/L. The highest degradation efficiency obtained at ambient temperature was 90.95% with initial concentration of OTC of 10 mg/L, H2O2 = 150 mg/L and Fe2+ = 5 mg/L. Moreover, biodegradability improved from 0.04 to 0.36 and chemical oxygen demand degradation was 78.35% after 60 min of treatment. This study proved that Fenton process can be used for pretreatment of wastewater contaminated by OTC before a biological treatment.

Fabrication and characterization of ZrxCe1-xO2 catalytic powder by a hydrothermal process (수열합성공정에 의한 ZrxCe1-xO2 촉매 분말의 제조 및 특성)

  • Choi, Yeon-Bin;Son, Jeong-hun;Sohn, Jeong Ho;Bae, Dong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.309-312
    • /
    • 2017
  • The ceria powder is excellent in oxygen storage capacity (OSC) through the oxidation and reduction reaction of Ce ions and is used as a typical material for a three-way catalyst of an automobile which purifies the exhaust gas. However, since ceria generally has poor thermal stability at high temperatures, it is doped with metal ions to improve thermal stability. Therefore, in this study, Zr ions were doped into ceria powder, and their characteristics were further improved due to the increase of specific surface area with decreasing particle size due to doping. In this study, the synthesis of zirconium doped ceria nanopowder was synthesized by hydrothermal process. In order to synthesis Zr ion doped ceria nanopowder, the precursor reaction at was $200^{\circ}C$ for 6 hours. The average particle size of synthesized Zr doped $CeO_2$ nanopowder was below 20 nm. The specific surface area of synthesized Zr ion doped ceria nanopowder increased from $52.03m^2/g$ to $132.27m^2/g$ with Zr increased 30 %.

Effect of Methoxy PEG-45 Thioctate (LA-PEG) against Oxidative Protein Damage and Anti-glycation (Methoxy PEG-45 Thioctate (LA-PEG)의 항노화 효과에 대한 연구)

  • Kim, Jin Hwa;Oh, Jung Young;Bae, Jun Tae;Lee, Geun Soo;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.3
    • /
    • pp.239-245
    • /
    • 2017
  • Aging is a physiological and irreversible, progressive process involving changes in the ability to maintain cellular functionality. It affects tissues, organs and the whole organism and thus finally cause to death. Oxidative stress has been postulated to contribute significantly to the accelerated accumulation of advanced glycation endproducts (AGEs) in collagen, which is implicated in the process of skin aging. In the present study, glycation inhibitory activity of methoxy PEG-45 thioctate (LA-PEG), and its inhibitory effect of cellular oxidation and senescence was investigated. Treatment of LA-PEG significantly showed lower fluorescent intensity induced by AGEs. In addition, LA-PEG was significantly reduced the formation of ROS induced by AGEs. High antioxidant and anti-glycation activities of LA-PEG in glycated collagen model indicated its contribution to anti-aging process. Cellular senescence leads to an increase in senescence-associated ${\beta}$-galactosidase ($SA-{\beta}-gal$) activity, which can be used as a biomarker to identify senescent cells. Treatment with LA-PEG showed a dose-dependent, statistically significant decreased in $SA-{\beta}-gal$ indicating reduced senescence. These results suggest that LA-PEG may have potent anti-aging effects and can be used as new functional materials against cellular accumulation of AGEs.

Ultrasonic Immersion-steam Cleaning and High Temperature Drying Process for Removing Cutting Oil on Titanium Turning Scraps (타이타늄 터닝 스크랩 내 절삭유 제거를 위한 초음파 침지-스팀 및 고온 건조 공정)

  • Chae, Jikwang;Yoo, Suhwan;Oh, Jung-Min;Lim, Jae-Won
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.60-65
    • /
    • 2021
  • The recycling of titanium turning scraps requires the removal of cutting oil and other contaminants remaining on the surface. In this study, an experiment was conducted in which titanium scraps were cleaned by a combination of ultrasonic immersion-steam cleaning and subsequent drying at high temperature. To determine the removal mechanism of cutting oil, the contact angle between titanium surface and cutting oil was measured. The result confirmed the optimum condition of the immersion solution of the titanium turning scraps. In the case of immersion cleaning of Na4P2O7 aqueous solution, the degree of carbon removed in the cutting oil was the highest at 50℃, and it was confirmed that the carbon content obtained from the combination of steam cleaning and ultrasonic immersion-steam cleaning was lower than that from steam cleaning after ultrasonic immersion. The oxidation and decomposition behaviors of cutting oil were investigated using Thermogravimetric analysis (TGA) and the result was applied in the high temperature drying process. From the results of the high temperature drying tests, it was concluded that 200℃ is the optimal drying temperature.

Supercritical Water Oxidation of Anionic Exchange Resin (초임계수 산화를 이용한 음이온교환수지 분해)

  • Han, Joo-Hee;Han, Kee-Do;Do, Seung-Hoe;Kim, Kyeong-Sook;Son, Soon-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.549-557
    • /
    • 2006
  • The characteristics of supercritical water oxidation have been studied to decompose the waste anionic exchange resins which were produced from a power plant. The waste resins from a power plant were mixture of anionic and cationic exchange resins. The waste anionic exchange resins had been separated from the waste resins using a solid-liquid fluidized bed. It was confirmed that the cationic exchange resins were not included in the separated anionic exchange resins by the elemental and thermogravimetric analysis. A slurry of anionic exchange resins which could be fed continuously to a supercritical water oxidation apparatus by a high pressure pump was prepared using a wet ball mill. Although the COD of liquid effluent had been reduced more than 99.9% at 25.0 MPa and $500^{\circ}C$ within 2 min, the total nitrogen content was reduced only 41%. The addition of nitric acid to the slurry could reduce the total nitrogen content in treated water. The central composite design as a statistical desist of experiments had been applied to optimize the conditions of decomposing anionic resin slurry by means of the COD and total nitrogen contents in treated waters as the key process output variables. The COD values of treated waters had been reduced sufficiently to $99.9{\sim}100%$ af the reaction conditions of $500{\sim}540^{\circ}C$, 25.0 MPa within 2 min. The effects of temperature and nitric acid concentration on COD were not significant. However, the effect of nitric acid concentration on the total nitrogen was found to be significant. The regression equation for the total nitrogen had been obtained with nitric acid concentration and the coefficient of determination($r^2$) was 95.8%.

Effect of Freeze-Thaw Process on Myoglobin Oxidation of Pork Loin during Cold Storage (돈육 등심의 냉동 및 해동과정이 냉장저장동안 육색소 산화에 미치는 영향)

  • Jeong Jin-Yeon;Yang Han-Sul;Kang Geun-Ho;Lee Jeong-Ill;Park Gu-Boo;Joo Seon-Tea
    • Food Science of Animal Resources
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • To investigate the effect of ${\beta}$-hydroxyacyl CoA-dehydrogenase(HADH) activity increased by freezed and thaw process on myoglobin(Mb) oxidation without lipid oxidation during, pork loins were collected at postmortem 24 hts and sliced to steaks (3 cm thickness). Samples were packaged in a polyethylene bag and subjected to flesh group (control), one cycle fieezed and thaw group (treatment 1) and two cycles freezed and thaw group (treatment 2), respectively. Samples were measure meat color (CIE $L^*,\;a^*,\;b^*$), the contents(%) of MetMb, thiobarbituric acid reactive substance (TBARS) value and HADH(${\beta}$-hydroxyacyl CoA-dehydrogenase) activity at 0, 3, and 7 days of storage at $4^{\circ}C$. Both treatments showed significantly (p<0.05) lower $L^*$ and higher $L^*$ value compared to those of control at 7 days. On the contrary, MetMb contents(%) of treatments were significantly (p<0.05) higher than those of control during cold storage. However there were no significant (p> 0.05) differences in TBARS values between control and treatments during 7 days. There were significant (p<0.05) differences in HADH activity between control and treatments at 3 days of cold storage. Both treatments showed higher HADH activity compared to those of control. These results suggested that the freezed and thaw process could accelerate meat color deterioration, i.e. increased MetMb percentage without lipid oxidation in pork loin during cold storage. This also implied that autoxidation of Mb in freezed and thaw pork loin was influenced by enzyme-catalysed reactions in the tissue that would lead to decreased OxyMb.

A Study on Dissolve and Remove Analysis of Organic Chemicals Using a Mixed Method of Advanced Oxidation and Micro Filtering - Water Drinking Point - (고도산화와 정밀여과의 혼성공법을 이용한 유기화학물질의 분해 및 제거분석에 관한 연구 - 먹는 물을 중심으로 -)

  • An, Tai-Young;Jun, Sang-Ho;Ahn, Tae-Seok;Han, Mi-Ae;Hur, Jang-Hyun;Pak, Mi-Young
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.99-111
    • /
    • 2007
  • It is impossible to remove toxic organic substances that are recognized as a cancer caused suspicious element in drinking water using the conventional water purification method. This study introduces groundwater into a reaction chamber as an effective amount of water to process this water using a mixed method of AOP oxidation and M/F membrane and purifies it as a desirable level by artificially mixing such toxic substances in order to effectively process the water. Based on this fact, this study configures an optimal operation condition. The VOCs existed in toxic substances was investigated as a term of phenol and toluene, and agricultural chemicals were also investigated as a term of parathion, diazinon and carbaryl. The experiment applied in this study was performed using a single and composite soolution. In the operation condition applied to fully dissolve and remove such substances, the amount of $H_2O_2$ injected in the process was 150 mL of a fixed quantity, the value of pH was configured as $5.5{\sim}6.0$, the temperature was controlled as a range of $12{\sim}16^{\circ}C$, the dissolved amount of ozone was applied more than 5.0 mg/L, the reaction time was determined as an optimal condition, such as $30{\sim}40$ minutes, and the segregation membrane in the same reactor was determined for acquire water drinking of large quantity using a pore size of $0.45{\mu}m$ M/F membrane.

Effect of Storage Condition of the Refined Palm Oil on its Heat Bleachability (탈산 팜유의 저장조건이 그의 고온 탈색도에 미치는 영향)

  • Rhee, Joon-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.200-204
    • /
    • 1980
  • A series of tests ware conducted to find out whether continuous heat bleaching of the refined Malaysian plam oil stored in different conditions could reduce color of the finished oil in an actual plant situation. When the refined oil was stored in a stainless steel tank and was not abused by heat during 5 month storage period, heat bleaching followed by clay bleaching and deodorization resulted in a substantial reduction in color of the finished oil in comparison to conventional process (clay bleaching of the refined oil followed by deodorization) (2.6 vs 1.3 red in Lovibond color). However, when the refined oil was stored in a carbon steel tank and was highly abused by heat in the presence of iron picked up from the tank (6.53 ppm) during the same storage period, heat bleaching followed by clay bleaching and deodorization did not help reduce color of the finished oil in comparison to the conventional process (2.7 vs 2.8 red in Lovibond color). It was also shown that oxidation values were not good indices for heat bleachability. Heat bleaching caused slight increase in polymer content of the oil. However, trans isomers were not increased when the oil was heat bleached.

  • PDF