• Title/Summary/Keyword: Advanced Water treatment processes

Search Result 137, Processing Time 0.026 seconds

Removal of Ammonia in Water using Acid-impregnated Activated Carbon and Dynamic Membrane System (산 첨착활성탄과 동적막 공정을 이용한 수중 암모니아 제거)

  • Choi, Won Kyung;Shin, Dong-Ho;Lee, Yong Taek
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.310-316
    • /
    • 2006
  • In this study, activated carbon in a powder form was used to remove dissolved ammonia which causes a fouling smell in water. Since the adsorption capacity of common powder activated carbon is not high enough, we prepared powder activated carbon deposited on an acid solution to enhance the adsorption capacity. The acid-impregnated activated carbon was applied on the surface of porous fibril support ($10{\sim}50{\mu}m$) by which adsorption and separation processes take place simultaneously by varying effective pressure. As the result, the ammonia removal efficiency is above 60% in the mixing process which is 10~15% higher than general powder activated carbon. From the result of an experiment on the pure permeable test of a dynamic membrane, its transmittance is 400~700 LMH (liter per hour), indicating that the prepared membrane works as a microfiltration membrane. Therefore, it is expected that the membrane prepared in this way would improve the efficiency of water treatment than conventional membranes.

Development and Application of Modified Intermittently Aeration mode for Advanced Phase Isolation Ditch (APID) process at Winter Season (APID공정 내 동절기 개량형 간헐포기 운전모드 적용 및 개발)

  • Kwak, Sung-Keun;An, Sang-Woo;Chung, Mu-Keun;Park, Jae-Ro;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.872-878
    • /
    • 2009
  • Advanced Phase Isolation Ditch (APID) process was studied to develop economic retrofitting technology, for the plants where retrofitting of common activated sludge process is required. In this study, to develop and apply the modified intermittently aeration mode as process control conditions for treating municipal wastewater, a demonstration plant was installed and operated in the existing sewage treatment plant of P city. During this study, the average effluent $BOD_5$, SS, T-N, and T-P concentrations were 6.3, 4.5, 10.0, and 1.3 mg/L. The modified mode decreased the nitrification capability more than the conventional mode in the application period. Nitrate in the anaerobic condition can have a negative effect on biological phosphorus removal. In the decreasing nitrate levels, the modified mode increased the biological ability of removal phosphorus more than the conventional mode in this study. Therefore, newly developed APID process with modified intermittent aeration mode can be one of the useful processes for stable organic matter and nutrients removal.

Removal of Tetrachloroethylene using Advanced Oxidation Processes (고급산화법을 이용한 Tetrachloroethylene의 처리)

  • Shin, Hang-Sik;Lim, Jae-Lim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.4
    • /
    • pp.64-72
    • /
    • 1996
  • The effect of $O_3$, $O_3/pH$, and $O_3/H_2O_2$, $O_3/UV$, and $H_2O_2/UV$ advanced oxidation process(AOP) were investigated for the treatment of tetrachloroethylen(PCE) at various condition. The removal efficiency of 10, 20, and 30ppm PCE by ozonation were almost same, only about 60%. And pseudo first-order rate constants, ko for overall oxidation was about 0.097($min^{-1}$). In the $O_3/pH$ AOP experiment for the 20ppm PCE, the removal rate of PCE increased with the increase of pH. However, mineralization rate of PCE at pH 7 was higher than at pH 10. In the $O_3/H_2O_2$ AOP, the removal rate of PCE was the highest at peroxide-to-ozone dosage ratio of about 0.9, which PCE was removed over 99.95%. Despite 42% of PCE was directly photolyzed by the UV irradiation, the removal efficiency of PCE by $O_3/UV$ AOP was only about 70%. In $H_2O_2/UV$ AOP, the removal efficiency of PCE increased to about 98% in proportion to the $H_2O_2$ injection concentration at constant UV intensity of 5W/l.

  • PDF

Evaluation of Propylenecarbonate/water Physical Absorbents and its Application in Membrane Contactors for CO2/CH4 Separation (CO2/CH4 분리를 위한 프로필렌카보네이트/물 흡수제 특성 평가 및 막접촉기의 적용)

  • Park, Ahrumi;Kim, Seong-Joong;Lee, Pyung Soo;Nam, Seung Eun;Park, You In
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.126-134
    • /
    • 2016
  • To produce renewable biomethane from biogas, the properties of physical absorbents such as water, methanol, 1-methyl-2-pyrrolidone (NMP), poly(ethylene glycol) dimethylether (PEGDME), and propylene carbonate (PC) were studied, and PC was applied to membrane contactor systems. Among physical absorbents, PC exhibited a high contact angle of $58.3^{\circ}$ on polypropylene surface, and a PC/water mixture (5 wt%) increased the contact angle to $90^{\circ}$. Furthermore, the PC/water mixture presented higher $CO_2$ absorption capacities (0.148-0.157 mmol/g) than that of water (0.121 mmol/g), demonstrating a good property as an absorbent for membrane contactors. Actual operations in membrane contactors using the PC/water mixture resulted in $CO_2$ removal of 98.0-97.8% with biomethane purities of 98.5-98.3%, presenting a strong potential for biogas treatment. However, the PC/water mixture yielded moderate improved in $CO_2$ removal and methane recovery, as compared with water in the membrane contactor operation. This is originated from insufficient desorption processes to reuse absorbent and low $CO_2$ flux of the PC/water absorbent. Thus, it is requiring optimizations of membrane contactor technology including development of absorbent and improvement of operation process.

Assessment of Advanced Oxidation Processes using Low and Medium-Pressure Lamps with H2O2 for Reclamation of Biologically Treated Wastewater Effluents (하수 2차 처리수 재이용을 위한 저압 및 중압 고도산화시스템의 성능평가)

  • Ahn, Kyu-Hong;An, Seok;Maeng, Seung-Kyu;Kim, Ki-Pal;Hong, Joon-Seok;Jung, Min-Woo;Kweon, Ji-Hyang;Ahmed, Zubair
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.542-549
    • /
    • 2003
  • In the present study, the feasibility of $UV/H_2O_2$ systems was investigated using low and medium-pressure lamps on biologically treated wastewater effluents for secondary effluent reclamation. Two types of UV lamps were used as the light sources (a 39-W low-pressure mercury lamp and a 350-W medium-pressure mercury lamp). The results from these UV systems showed that the removal of organic compounds could be achieved in the contact time of longer than 30min (i.e., low UV doses). Efficiencies of color removal and disinfection were far better than those of organic matters measured as TOC, DOC and $TCOD_{cr}$. In the low-pressure lamp UV system, it has been found that DOC and color removals were 60.9 and 86.2% with 50mg/L of $H_2O_2$ and contact times of 30 minute, respectively. Whereas, with the medium-pressure lamp UV system, TOC, DOC and color removal were 27.1, 5.6 and 95% with 14.3mg/L of $H_2O_2$ and 14 minute of contact times, respectively. Both systems could be applied for the reclamation of secondary effluent treated with biological treatment processes.

Trends of phosphorus recovery technology from sewage sludge ash by wet chemical method (습식 화학적 방법에 의한 하수 슬러지 소각재에서의 인 회수 기술동향)

  • Lee, Min-Su;Kim, Dong-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.131-143
    • /
    • 2018
  • Phosphorus (P) is a limited, essential, and irreplaceable nutrient for the biological activity of all the living organisms. Sewage sludge ash (SSA) is one of the most important secondary P resources due to its high P content. The SSA has been intensively investigated to recover P by wet chemicals (acid or alkali). Even though $H_2SO_4$ was mainly used to extract P because of its low cost and accessibility, the formation of $CaSO_4$ (gypsum) hinders its use. Heavy metals in the SSA also cause a significant problem in P recovery since fertilizer needs to meet government standards for human health. Therefore, P recovery process with selective heavy metal removal needs to be developed. In this paper some of the most advanced P recovery processes have been introduced and discussed their technical characteristics. The results showed that further research is needed to identify the chemical mechanisms of P transformation in the recovery process and to increase P recovery efficiency and the yields.

Comparison of operational efficiency between sand-filtration process and membrane filtration process (모래여과 공정과 막여과 공정의 운영효율 비교)

  • Byeon, Kwangjin;Jang, Eunsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.529-537
    • /
    • 2017
  • Membrane filtration process is an advanced water treatment technology that has excellently removes turbidity and microorganisms. However, it is known that it has problems such as low economic efficiency and the operating stability. Therefore, this study was to evaluate on the economical feasibility and operational stability comparison of membrane and sand filtration process in Im-sil drinking water treatment plant. For the economic analysis of each process, the electricity cost and chemical consumption were compared. In the case of electric power consumption, electricity cost is $68.67KRW/m^3$ for sand filtration and $79.98KRW/m^3$ for membrane filtration, respectively. Therefore, membrane filtration process was about 16% higher than sand filtration process of electricity cost. While, the coagulant usage in the membrane filtration process was 43% lower than the sand filtration process. Thus, comparing the operation costs of the two processes, there is no significant difference in the operating cost of the membrane filtration process and the sand filtration process as $85.94KRW/m^3$ and $79.71KRW/m^3$ respectively (the sum of electricity and chemical cost). As a result of operating the membrane filtration process for 3 years including the winter season and the high turbidity period, the filtrated water turbidity was stable to less than 0.025 NTU irrespective of changes in the turbidity of raw water. And the CIP(Clean In Place) cycle turned out to be more than 1 year. Based on the results of this study, the membrane filtration process showed high performance of water quality, and it was also determined to have the economics and operation stability.

Application of DBD Plasma Catalysis Hybrid Process to remove Organic Acids in Odors (악취물질인 유기산 제거를 위한 DBD 플라즈마 촉매 복합공정의 적용)

  • Hong, Eun-Gi;Suh, Jeong-Min;Choi, Kum-Chan
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1627-1634
    • /
    • 2014
  • Odor control technology include absorption, adsorption, incineration and biological treatments. But, most of processes have some problems such as secondary organic acids discharge at the final odor treatment facility. In order to solve the problems for effective treatment of organic acids in odor, it is necessary to develop a new type advanced odor control technology. Some of the technology are plasma only process and plasma hybrid process as key process of the advanced technology. In this study, odor removal performance was compared DBD(Dielectric Barrier Discharge)plasma process with PCHP(plasma catalysis hybrid process) by gaseous ammonia, formaldehyde and acetic acid. Plasma only process by acetic acid obtained higher treatment efficiency above 90%, and PCHP reached its efficiency up to 96%. Acetic acid is relatively easy pollutant to control its concentration other than sulfur and nitrogen odor compounds, because it has tendency to react with water quickly. To test of the performance of DBD plasma process by applied voltage, the tests were conducted to find the dependence of experimental conditions of the applied voltage at 13 kV and 15 kV separately. With an applied voltage at 15 kV, the treatment efficiency was achieved to more higher than 13 kV from 83% to 99% on ammonia, formaldehyde and acetic acid. It seems to the odor treatment efficiency depends on the applied voltage, temperature, humidity and chemical bonding of odors.

Optimization of Nitrogen and Phosphorus Removal of Temporal and Spatial Isolation Process by Model Simulation System (시공간 동시분할 공정 시뮬레이션을 통한 질소 및 인 제거 최적화 방안)

  • Ryu, Dongjin;Chang, Duk;Shin, Hyungsoo;Park, Sangmin;Hong, Kiho;Kim, Sooyoung;Kim, Myoungjun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.206-215
    • /
    • 2007
  • The objective of this study was to establish the optimal system operating strategies for nitrogen and phosphorus removal through model simulation system built for advanced wastewater treatment targeting on simultaneous temporal/special phase isolation BNR process. The simulation system was built with unit process modules using object modules in GPS-X code. The system was well verified by field experiment data. Simulation study was carried out to investigate performance response to design and operation parameters, i.e. hydraulic retention time (HRT), solids retention time (SRT), and cycle time. The process operated at HRTs of 10~15 hours, longer SRTs, and cycle time of 2 hours showed optimal removal of nitrogen. The HRTs of 10~15 hours, SRTs of 20~25 days, and longer cycle time was optimal for phosphorus removal. Both simulation and field studies showed that optimal operating strategies satisfying both the best nitrogen and phosphorus removals include HRTs ranged 10~15 hours, SRTs ranged 20~25 days, and cycle times of 4~8 hours. The simulation system with modularization of generalized components in BNR processes was, therefore, believed to be a powerful tool for establishing optimal strategies of advanced wastewater treatment.

Removal Characteristics of NOx Using a Soil-Biofilter (토양 Bio-Filter를 이용한 질소산화물 제거특성)

  • Cho Ki-Chul;Ko Byeung-Ik;Lee Nae-Hyun;Cho Il-Hyoung
    • Journal of Environmental Science International
    • /
    • v.15 no.2
    • /
    • pp.133-139
    • /
    • 2006
  • Soil biofiltration is an environmentally-sound technology for elimination of VOCs, odorous and NOx compounds from a low concentration, high volume waste gas streams because of its simplicity and cost-effectiveness. This study was performed to evaluate effect of removal of gaseous NOx using a soil and a yellow soil. Over $60\%\;and\;48\%$ of NOx from a soil and a yellow soil was removed at the inlet NO concentrations of $423\~451$ppb, respectively. The bio-filter using a soil media was capable of purifying NOx with a different natural processes. Although some of the processes are quite complex, they can broadly be summarized as adsorption into soil pore water, and biochemical transformations by soil bacteria. When the filteration bio-reactor was applied to a soil and a yellow soil, effective NOx removal was obtained for several times and months. These results show that a soil biofilter can be of use as an alternative advanced NOx treatment system.