• 제목/요약/키워드: Advanced Water treatment

검색결과 710건 처리시간 0.033초

실험실 규모 크립토스포리디움의 불활성화 실험을 통한 오존 고도정수처리 정수장에서 소독 효과 예측 (Prediction of Cryptosporidium parvum Inactivation in Advanced Ozone Drinking Water Treatment with Lab Scale Experiments)

  • 조민;정현미;김이호;손진식;박상정;윤제용
    • 한국물환경학회지
    • /
    • 제21권1호
    • /
    • pp.7-13
    • /
    • 2005
  • With the appearance of pathogenic microorganisms, which were resistant to free chlorine, the significant attention to the necessity of powerful alternative disinfection methods such as ozone, chlorine dioxide, LTV irradiation to inactivating pathogens has been increased in water treatment. Among these alternative disinfection methods, ozone is well known as strong biocidal method and the usage of ozone is also increasing in Korea. However, in Korea, there has been no report on the quantitative study of Cryptosporidium parvum with ozone and its evaluation in advanced drinking water treatments. This study reports on the methodology for predicting the ozone inactivation of Cryptosporidium parvum by ozone disinfection in advanced drinking water treatment. The method is based on the fact that a specific inactivation level of microorganisms is achieved at a unique value of ozone exposures, independent of ozone dose and type of water, and quantitatively described by a delayed Chick-Watson model. The required values ${\bar{C}}T$ for 2 log inactivation of Cryptosporidium parvum was $6.0mg/L{\cdot}min$ and $15.5mg/L{\cdot}min$ at $20^{\circ}C$ and $5^{\circ}C$, respectively. From this obtained Cryptosporidium parvum inactivation curves and calculated ${\bar{C}}T$ values of advanced drinking water treatment water in Korea with FIA (Flow injection alaysis), we can predict that water treatment plant can achieve a 1.1~1.8 log inactivation and 0~0.4 log inactivation at $20^{\circ}C$ and $5^{\circ}C$, respectively. This methodology will be useful for drinking water treatment plants which intend to evaluate the disinfection efficiencies of their ozonation process without full scale test and direct experiments with Cryptosporidium parvum.

콘크리트 표면처리방법에 따른 금속용사 피막의 투수성 평가에 관한 실험적 연구 (An Experimental Study on the Permeability Evaluation of Metal Spray System by Concrete Surface Treatment)

  • 박진호;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.34-35
    • /
    • 2015
  • Recently, introduction of Advanced water treatment facilities has been increasing due to serious domestic water pollution. Ozone is a strong oxidizing materials in the advanced water treatment facilities. However, due to such a strong oxidation, Ozone eroded waterproofing/corrosion on the concrete surface and caused performance degradation. Therefore, in this study, permeability experiment of metal spraying system by concrete surface treatment was conducted.

  • PDF

고도정수처리에 따른 상수도 공급과정에서의 소독부산물 농도 예측모델 개발 (Development of a Concentration Prediction Model for Disinfection By-product according to Introduce the Advanced Water Treatment Process in Water Supply Network)

  • 서지원;김기범;김기범;구자용
    • 상하수도학회지
    • /
    • 제31권5호
    • /
    • pp.421-430
    • /
    • 2017
  • In this study, a model was developed to predict for Disinfection By-Products (DBPs) generated in water supply networks and consumer premises, before and after the introduction of advanced water purification facilities. Based on two-way ANOVA, which was carried out to statistically verify the water quality difference in the water supply network according to introduce the advanced water treatment process. The water quality before and after advanced water purification was shown to have a statistically significant difference. A multiple regression model was developed to predict the concentration of DBPs in consumer premises before and after the introduction of advanced water purification facilities. The prediction model developed for the concentration of DBPs accurately simulated the actual measurements, as its coefficients of correlation with the actual measurements were all 0.88 or higher. In addition, the prediction for the period not used in the model development to verify the developed model also showed coefficients of correlation with the actual measurements of 0.96 or higher. As the prediction model developed in this study has an advantage in that the variables that compose the model are relatively simple when compared with those of models developed in previous studies, it is considered highly usable for further study and field application. The methodology proposed in this study and the study findings can be used to meet the level of consumer requirement related to DBPs and to analyze and set the service level when establishing a master plan for development of water supply, and a water supply facility asset management plan.

Caffeine과 Carbamazepine: 낙동강 수계에서의 검출 및 정수처리 공정에서의 거동 (Caffeine and Carbamazepine: Detection in Nakdong River Basin and Behavior under Drinking Water Treatment Processes)

  • 손희종;염훈식;정종문;장성호;김한수
    • 한국환경과학회지
    • /
    • 제21권7호
    • /
    • pp.837-843
    • /
    • 2012
  • The aims of this study were to investigated the occurrence of caffeine and carbamazepine in Nakdong river basin (8 mainstreams and 2 tributaries) and the behavior of caffeine and carbamazepine under drinking water treatment processes (conventional and advanced processes). The examination results showed that caffeine was detected at all sampling sites (5.4~558.5 ng/L), but carbamazepine was detected at five sampling sites (5.1~79.4 ng/L). The highest concentration level of caffeine and carbamazepine in the mainstream and tributaries in Nakdong river were Goryeong and Jinchun-cheon, respectively. These pharmaceutical products were completely removed when they were subject to conventional plus advanced processes of drinking water treatment processes. Conventional processes of coagulation, sedimentation and sand-filtration were not effective for their removal, while advanced processes of ozonation and biological activated carbon (BAC) filtration were effective. Among these pharmaceuticals, carbamazeoine was more subject to ozonation than caffeine.

Advanced Water Treatment by Tubular Alumina Ceramic Ultrafiltration: Effect of Periodic Water-back-flushing Period

  • Park, Jin-Yong;Lee, Song-Hui
    • Korean Membrane Journal
    • /
    • 제11권1호
    • /
    • pp.15-20
    • /
    • 2009
  • The periodic water-back-flushing using permeate water was performed to minimize membrane fouling and to enhance permeate flux in tubular ceramic ultrafiltration (UF) system for Gongji stream water treatment in Chuncheon city. The filtration time (FT), which was the water-back-flushing period, 2 min with periodic 15 sec water-back-flushing showed the highest value of dimensionless permeate flux ($J/J_o$), and the lowest value of resistance of membrane fouling ($R_f$), and we acquired the highest total permeate volume ($V_T$) of 6.35 L. Consequently FT 2 min at back-flushing time (BT) 15 sec could be the optimal condition in advanced UF water treatment of Gongji stream. Then the average rejection rates of pollutants by our tubular ceramic UF system were 99.4% for Turbidity, 31.8% for $COD_{Mn}$, 22.6% for $NH_3$-N and 65.9% for T-P.

다양한 고도폐수처리공정에서의 생물반응조 세균수와 처리효율과의 비교 (Comparison of Bacterial Numbers and Treatment Efficiencies in Bioreactors of Various Advanced Wastewater Treatment Processes)

  • 성기문;조연제;김성균;박은원;유기환;이상현;이동근;박성주
    • 한국물환경학회지
    • /
    • 제25권2호
    • /
    • pp.329-334
    • /
    • 2009
  • Bacterial numbers, such as endospore-formers, and treatment efficiencies were investigated for Rotating Activated Bacillus Contactors (RABC) and other advanced wastewater treatment processes including anaerobic-anoxic-oxic (A2O), sequencing batch reactor (SBR) and biological aerated filter (BAF). Endospore-forming bacterial numbers in the RABC showed 129-fold higher levels than those of the existing advanced systems. RABC process demonstrated the highest bacterial numbers in its bioreactors (paired t-test, p<0.01). RBC biofilms and aeration tanks of the RABC system showed 131- and 476-fold higher than other existing advanced processes, respectively. Mean treatment efficiencies of the existing systems were 83.5% for chemical oxygen demand (COD), 59.1% for total nitrogen (TN) and 76.8% for total phosphorus (TP). However, RABC process removed 96.9% for COD, 96.9% for TN and 91.9% for TP for highly concentrated food wastewater (COD>1,500 mg/L, TN>150 mg/L, TP>50 mg/L). Treatment efficiency was significantly reduced when the numbers of Bacillus genus in the bioreactors decreased below $10^6CFU/mL$. The automated RABC (A-RABC), in which dissolved oxygen concentrations are automatically controlled, showed higher treatment efficiencies compared to the RABC process. The RABC system maintained sufficient bacterial numbers for the effective treatment of highly concentrated food wastewater. Moreover, final effluent was in agreement to water quality standards.

Occurrence and removals of micropollutants in water environment

  • Kim, Moon-Kyung;Zoh, Kyung-Duk
    • Environmental Engineering Research
    • /
    • 제21권4호
    • /
    • pp.319-332
    • /
    • 2016
  • Micropollutants are often discharged to surface waters through untreated wastewater from sewage treatment plants and wastewater treatment plants. The presence of micropollutants in surface waters is a serious concern because surface water is usually provided to water treatment plants (WTP) to produce drinking water. Many micropollutants can withstand conventional WTP systems and stay in tap water. In particular, pharmaceuticals and endocrine disruptors are examples of micropollutants that are detected at the drinking water, ppb, or even ppb level. A variety of techniques and processes, especially advanced oxidation processes, have been applied to remove micropollutants from water to control drinking water contamination. This paper reviews recent researches on the occurrence and removal of micropollutants in the aquatic environments and during water treatment processes.

고도정수처리를 위한 HCPAC-MBR 공정에서의 소독부산물 저감에 관한 연구 (A Study on Removal of Disinfection By-products in High Concentration Powdered Activated Carbon Membrane Bio-reactor Process for Advanced Water Treatment)

  • 이송희;장성우;서규태
    • 상하수도학회지
    • /
    • 제20권1호
    • /
    • pp.27-34
    • /
    • 2006
  • This study was conducted to evaluate the performance of a membrane bioreactor filled with high concentration of powdered activated carbon (HCPAC-MBR) to reduce DBPs at the drinking water treatment. The pilot system was installed after the rapid sand filtration process whose plant was the conventional treatment process. The removal efficiencies of DBPs were measured during pilot operation period of 2 years. HAA and THM removal rates could be maintained around 80~90% without any troubles and then tremendous reduction of HAA and THM reactivity were observed more than 52%. The average removal rate of HAA formation potential (FP) and THM formation potential (FP) were 70.5% and 67.6% respectively. It is clear that the PAC membrane bioreactor is highly applicable for advanced water treatment to control DBPs.

고도정수처리용 콘크리트 금속용사 피막의 내오존성 및 오존처리 후 부착강도 평가에 관한 실험적 연구 (Experimental Study on Evaluation of Bond Strength after Ozone Treatment and Ozone Resistance of Concrete Metal Spray Coating for Advanced Water Treatment)

  • 박진호;장현오;이한승
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권4호
    • /
    • pp.68-75
    • /
    • 2018
  • 기존의 정수처리 방법으로는 제거되지 않는 물질이 발생함에 고도정수 처리 시설의 도입이 증가하고 있다. 그러나 오존을 이용한 고도정수처리 시설의 내부 방수 방식재는 오존의 산화력에 의해 열화되며 콘크리트까지 영향을 미쳐 내구성 저하의 원인이 된다. 본 연구에서는 내오존성 및 내화학성이 뛰어난 금속 패널을 기존의 시공법 보다 손쉬운 방법으로 시공하기 위한 방법으로 금속용사 공법을 이용하여 수처리 시설 콘크리트 구조물의 열화를 원천적으로 방지하기 위한 마감공법 개발 연구의 일원으로 용사금속 종류 및 피막의 표면처리 방법에 따른 내오존성 평가를 실시하였으며, 오존처리 후의 부착강도를 평가하였다. 실험결과 용사금속 Ti이 용사 후에도 내오존성이 뛰어난 것으로 나타났으며 표면처리 방법으로는 테프론계 봉공처리제를 사용하여 마감하는 것이 내오존성 및 부착성능 확보에 가장 적합한 방법이라 판단된다.

고도정수처리에서 사여과와 정밀여과의 유기물처리특성에 관한 연구 (Treatment Characteristics of Sand Filtration and Microfiltration (MF) in Advanced Water Treatment)

  • 김형석;이병호
    • 상하수도학회지
    • /
    • 제24권6호
    • /
    • pp.723-734
    • /
    • 2010
  • With a belief of high water quality production and less chemical usage, membrane technology including Microfiltration (MF), Ultrafiltration (UF), and Nanofiltration(NF) is being employed more and more in drinking water treatment process. However, due to higher energy consumption of UF and NF, MF is normally used for drinking water treatment especially in a plant of large scale. In this investigation, performance ofsand filtration and membrane filtration was compared regarding removal of various water quality parameters, such as TOC, DOC, KMnO4 consumption, THMFP, and HAAFP. Two lines of pilot plant have been operated, one of which line is a traditional advanced water treatment process which includes sedimentation, sand filtration, ozonation, and activated carbon, and the other line is an alternative treatment process which includes sedimentation with inclined plate, MF membrane, ozonation, and activated carbon. For the first about 4months of period, MF filtration showed similar or little bit higher performance than sand filtration. However, after about 4month later, sand filtration showed much higher performance in removing all parameters monitored in the investigation. It was found that sand filtration is a better option than MF filtration as far as microbial community is fully activated in sand filter bed.