• Title/Summary/Keyword: Advanced Vortex Method

Search Result 67, Processing Time 0.022 seconds

Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Up - (3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(II) - Common Flow Up에 관하여 -)

  • Yang Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.799-807
    • /
    • 2005
  • The flow characteristics and the heat transfer rate on a surface by the interaction of a pair of vortices are studied numerically. To analyze the common flow up produced by vortex generators in a rectangular channel flow, the pseudo-compressibility viscous method is introduced into the Reynolds-averaged Navier-Stokes equation for 3-dimensional unsteady, incompressible viscous flows. To predict turbulence characteristics, a two-layer $k-\varepsilon$ turbulence model is used on the flat plate 3-dimensional turbulence boundary The computational results predict accurately Reynolds stress, turbulent kinetic energy and flow field generated by the vortex generators. The numerical results, such as thermal boundary layers, skin friction characteristics and heat transfers, are also reasonably close to the experimental data.

Simulations of the Unsteady Viscous Flow Around an Impulsively Started Cylinder Using Improved Vortex Particle Method (개선된 입자와법을 이용한 급 출발하는 실린더 주위의 비정상 점성 유동 시뮬레이션)

  • Jin, Dong-Sik;Lee, Sang-Hwan;Lee, Ju-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.733-743
    • /
    • 2000
  • We solve the integral representation of the Navier-Stokes equations in a lagrangian view by tracking the particles, which have vortex strengths. We simulate the unsteady viscous flow around an impulsively started cylinder using the vortex particle method. Particles are advanced via the Biot-Savart law for a lagrangian evolution of particles. The particle strength is modified based on the scheme of particle strength exchange. The solid boundary satisfies the no-slip boundary condition by the vorticity generation algorithm. We newly modify the diffusion scheme and the boundary condition for simulating an unsteady flow efficiently. To save the computation time, we propose the mixed scheme of particle strength exchange and core expansion. We also use a lot of panels to ignore the curvature of the cylinder, and not to solve the evaluation of the surface density. Results are compared to those from other theoretical and experimental works.

CALCULATION OF HYDRODYNAMIC CHARACTERISTICS FOR SHIP'S PROPULSION MECHANISM OF WEIS-FOGH TYPE (Weis-Fogh형 선박추진기구의 유체역학적 특성계산)

  • Ro K.D.;Kang M.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.305-310
    • /
    • 2005
  • The velocity and pressure fields of a ship's propulsion mechanism of the Weis-Fogh type, in which a airfoil moves reciprocally in a channel, are studied in this paper using the advanced vortex method. The airfoil and the channel are approximated by a finite number of source and vortex panels, and the free vortices are introduced from the body surfaces. The viscous diffusion of fluid is represented using the core-spreading model to the discrete vortices. The velocity is calculated on the basis of the generalized Biot-Savart low and the pressure field is calculated from integrating the equation given by the instantaneous velocity and vorticity fields. Two-dimensional unsteady viscose flows of this propulsion mechanism are numerically clarified, and the calculated results agree well with the experimental ones.

  • PDF

Numerical Calculation of Flow Pattern and Fluid Force on a Circular Arc-type Sea Anchor

  • Ro, Ki-Deok;Oh, Se-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1258-1269
    • /
    • 2004
  • The fluid dynamic characteristics of a circular arc type sea anchor were calculated by a discrete vortex method. The flow for the surface of the sea anchor was represented by arranging bound vortices at adequate intervals. The simulations were performed by assuming that the separations occur at edges. With time, the drag coefficient was almost constant but the lift coefficient oscillated in a cycle due to von Karman's vortex street. As the camber ratios increase, the drag coefficient and Strouhal number were almost constant but the oscillating amplitude of the lift coefficient increased largely.

An Experiment on the Flow Control Characteristics of a Passive Fluidic Device (피동적 유체기구의 유동 조절 특성에 관한 실험)

  • Seo, Jeong-Sik;Song, Chul-Hwa;Cho, Seok;Chung, Moon-Ki;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.338-345
    • /
    • 2000
  • A model testing has been performed to investigate the flow characteristics of a vortex chamber, which plays a role of a flow switch and passively controls the discharge flow rate. This method of passive flow control is a matter of concern in the design of advanced nuclear reactor systems as an alternative to the active flow control to provide emergency water to the reactor core in case of postulated accidents like LOCA (Loss-Of-Coolant Accident). By changing the inflow direction in the vortex chamber and varying the flow resistance inside the chamber, the vortex chamber can control passively the injection flowrate. Fundamental characteristics such as discharge flow rate and pressure drop of the vortex chamber are measured, and its parametric effects on the performance of the vortex chamber are also systematically investigated.

Denoising PIV velocity fields and improving vortex identification using spatial filters (공간 필터를 이용한 PIV 속도장의 잡음 제거 및 와류 식별 개선)

  • Jung, Hyunkyun;Lee, Hoonsang;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.48-57
    • /
    • 2019
  • A straightforward strategy for particle image velocimetry (PIV) interrogation and post-processing has been proposed, aiming at reducing errors and clarifying vortex structures. The interrogation window size should be kept small to reduce bias error and improve spatial resolution. A spatial filter is then applied to the velocity field to reduce random error and clarify flow structure. The performance of three popular spatial filters were assessed: box filter, median filter, and local quadratic polynomial regression filter. In order to quantify random uncertainty, the image matching (IM) method is applied to an experimental dataset of homogeneous and isotropic turbulence (HIT) obtained by 2D-PIV. We statistically analyze the uncertainty propagation through the spatial filters, and verify the reduction in random uncertainty. Moreover, we illustrate that the spatial filters help clarify vortex structures using vortex identification criteria. As a result, PIV random uncertainty was reduced and the vortex structures became clearer by spatial filtering.

Dynamic Behavior of Vortices Separated from a Pitching Foil (피칭익에서 박리되는 와류의 거동)

  • Yang, Chang-Jo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.152-158
    • /
    • 2007
  • Most of experimental visualizations and numerical results on the flow field separated form a leading edge around an unsteady foil show a continuous streakline from the leading edge and large reverse flow between the streakline and the suction surface. However, they have not exactly clarified yet the dynamic behavior of vortices separated from the leading edge because separation around an unsteady foil is very complicated phenomenon due to many parameters. In the present study the flow fields around pitching foils have been visualized by using a Schlieren method with a high speed camera in a wind tunnel at low Reynolds number regions. It has been observed that small vortices are shed discretely from the leading and trailing edge and that they stand in line on the integrated streakline of separation shear layer. By counting vortices in the VTR frames it was clarified that the number of vortex shedding from the leading and trailing edge during one pitching cycle strongly depends on the non-dimensional pitching rate. Futhermore the vortices moving up to the leading edge on the suction surface of the pitching foil are visualized. They play an important role to balance the number of vortex shedding from both edges.

Flow Analysis in the Tip Clearance of Axial Flow Rotor Using Finite-Element Large-Eddy Simulation Method (유한요소 LES법에 의한 축류 회전차 팁 틈새의 유동해석)

  • Lee, Myeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.686-695
    • /
    • 2009
  • Flow characteristics in linear axial cascade have been studied using large eddy simulation(LES) based on finite element method(FEM) to investigate details of the leakage flow in the tip clearance of axial flow rotor. STAR-CD(FVM) and PAT-Flow(FEM) have been adopted to solve the Navier-Stokes equations for the simulation of the unsteady turbulent flow. Numerical results from the present study have been compared with the existing experimental results to investigate a tip clearance effect on velocity profile and static pressure distribution on blade surface at various spanwise positions. Both simulation results agree well with the experimental data. However, it has been shown that the results of finite-element large-eddy simulation agree better with experimental data than $k-{\varepsilon}$ turbulent model based on finite volume method regarding the tip vortex geometry and static pressure distribution at the center of the tip vortex core. As a result of this study, it is shown that finite-element large-eddy simulation method can predict more exactly on the tip leakage vortex flow and behind flow field.

The Study of Advanced Propeller Blade for Next Generation Turboprop Aircraft -Part I. Aerodynamic Design and Analysis (차세대 터보프롭 항공기용 최신 프로펠러 블레이드 연구 -Part I. 공력 설계 및 해석)

  • Choi, Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1017-1024
    • /
    • 2012
  • The aerodynamic design and analysis on advanced propeller with blade sweep was performed for recent turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. Propeller geometry is generated by varying chord length and pitch angle at design point of target aircraft. Advanced propeller is designed by apply the modified chord length, the tip sweep which is based on the geometry of conventional propeller. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and evaluated to be properly designed.

The Flow Characteristics around Circular Cylinder of Pressure Interference with Slits (표면압력이 상호 간섭되는 슬릿을 가진 원주의 후류 유동 특성)

  • 부정숙;김진석;류병남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.736-744
    • /
    • 2003
  • This study is conducted to investigate aerodynamic forces and wake structures about the pressure interference of a circular cylinder with slits. An experimental investigation of a circular cylinder with slits is carried out in uniform flow in the range of Reynolds number from 8,000 to 32,000 using X-type hot wire. Flow visualization is executed by smoke-wire method to understand the mechanism of these vortex formation process. Inspection in the wake at X/D=5.5 of the cylinder with the slits suggested that a strong vortex-shedding pattern for these cylinders is revealed compare with a circular cylinder without slits. It is found that the rolling up position of shear layer of the cylinder with slits is shorten compare with a circular cylinder without slits.