본 논문에서는 외국의 유명 논문 및 학회에서 발표된 최신 합성개구레이더(SAR) 기술개발 동향을 조사 및 정리하였다. SAR의 목적은 Real Aperture Antenna(RAR) 단점을 보완하기 위해서이며, 1950년대 처음으로 소개되었다. 이로부터 많은 연구자들 및 기술자들로부터 다양한 신 SAR 운용개념 및 기법들이 제안되었고 실제 구현화 하는데 성공하였다. 최근의 학회에서 소개된 미래지향 SAR 시스템 관련 개념들이 소개 및 정리되어 있다.
Target Detection in synthetic aperture radar(SAR) image is critical for military and national defense. In this paper, we propose YOLOv4-Attention architecture which adds attention modules to YOLOv4 backbone architecture to complement the feature extraction ability for SAR target detection with high accuracy. For training and testing our framework, we present new SAR embedding datasets based on MSTAR SAR public datasets which are about poor environments for target detection such as various clutter, crowded objects, various object size, close to buildings, and weakness of signal-to-clutter ratio. Experiments show that our Attention YOLOv4 architecture outperforms original YOLOv4 architecture in SAR image target detection tasks in poor environments for target detection.
SAR(Synthetic Aperture Radar) has characteristics well-suited for the measurement of geophysical parameters during day and night in all weather conditions. Recently, SAR data with high resolution acquired by satellites became available to the public. In such data, many features and phenomena of geometric structure of man-made objects and natural environments become observable. In this paper, we discuss main considerations including geometric distortion and coregistration for efficient utilization of high resolution SAR images. And, various advanced technologies in SAR application fields are introduced.
This paper presents the structural design of a planar synthetic aperture radar (SAR) antenna applied to a microsatellite. For micro-satellite applications, the SAR antenna structure must be lightweight, flat, and designed to withstand the launch environment. To satisfy these conditions, our novel antenna structure was designed using aluminium (AL) alloy. Structural analysis was performed for quasi-static load, random vibration, and shock load to verify its robustness in the launch environment, and the results are presented here.
최근 딥러닝을 이용한 SAR 영상의 목표물을 인식하는 알고리즘이 괄목할만한 성능을 보여주었다. 이러한 알고리즘들은 포즈 각도 정보를 무시한 채 목표물의 종류를 추정하는 것에만 초점을 맞춘다. 포즈 각도 추정 알고리즘은 단지 SAR 영상 목표물 인식 알고리즘의 전처리 과정으로 연구되었다. 하지만 감시 시스템에서, 목표물이 향하고 있는 방향을 추정하는 것 또한 중요하다. 먼저, 포즈 각도 추정을 통하여 적의 전술 배치를 계획을 추정할 수 있다. 또한 목표물이 아군 쪽을 바라보면 큰 위협이 되는데, 포즈 각도 추정을 통하여 이러한 정보를 알 수 있다. 따라서 본 논문은 목표물이 향하고 방향을 추정할 수 있는 콘볼루션 네트워크를 고안하였다. 네트워크를 학습시키기 위하여 SAR 영상의 목표물의 포즈 각도를 양자화하여 포즈 각도 label 을 구성하였다. 또한 이러한 포즈 각도 추정을 정제하는 알고리즘을 고안하였고 이는 보다 정확한 포즈 각도 추정을 가능하게 하였다. 그 결과, 제안된 네트워크는 포즈 각도 추정에 높은 정확도를 보여준다.
Very decisive progress was made in advancing fundamental POL-IN-SAR theory and algorithm development during the past decade. This was accomplished with the aid of airborne & shuttle platforms supporting single -to-multi-band multi-modal POL-SAR and also some POL-IN-SAR sensor systems, which will be compared and assessed with the aim of establishing the hitherto not completed but required missions such as tomographic and holographic imaging. Because the operation of airborne test-beds is extremely expensive, aircraft platforms are not suited for routine monitoring missions which is better accomplished with the use drones or UAVs. Such unmanned aerial vehicles were developed for defense applications, however lacking the sophistic ation of implementing advanced forefront POL-IN-SAR technology. This shortcoming will be thoroughly scrutinized resulting in the finding that we do now need to develop most rapidly POL-IN-SAR drone-platform technology especially for environmental stress-change monitoring with a great variance of applications beginning with flood, bush/forest-fire to tectonic-stress (earth-quake to volcanic eruptions) for real-short-time hazard mitigation. However, for routine global monitoring purposes of the terrestrial covers neither airborne sensor implementation - aircraft and/or drones - are sufficient; and there -fore multi-modal and multi-band space-borne POL-IN-SAR space-shuttle and satellite sensor technology needs to be further advanced at a much more rapid phase. The existing ENVISAT with the forthcoming ALOSPALSAR, RADARSAT-2, and the TERRASAT will be compared, demonstrating that at this phase of development the fully polarimetric and polarimetric-interferometric modes of operation must be viewed and treated as preliminary algorithm verification support modes and at this phase of development are still not to be viewed as routine modes.
Based on the recently developed deep learning technology, many studies have been conducted on deep learning networks that simultaneously detect and classify targets of interest in synthetic aperture radar(SAR) images. Although numerous research results have been derived mainly with the open SAR ship datasets, there is a lack of work carried out on the deep learning network aimed at detecting and classifying SAR ground targets and trained with the synthetic dataset generated from electromagnetic scattering simulations. In this respect, this paper presents the deep learning network trained with the synthetic dataset and applies it to detecting and classifying real SAR ground targets. With experiment results, this paper also analyzes the network performance according to the composition ratio between the real measured data and the synthetic data involved in network training. Finally, the summary and limitations are discussed to give information on the future research direction.
최근 Convolutional neural network (CNN)을 도입하여, SAR 영상의 목표물 인식 알고리즘이 높은 성능을 보여주었다. SAR 영상은 4 종류의 polarization 정보로 구성되어있다. 기계와 신호처리의 비용으로 인하여 일부 데이터는 적은 수의 polarization 정보를 가지고 있다. 따라서 우리는 SAR 영상 data 를 멀티모달 데이터로 해석하였다. 그리고 우리는 이러한 멀티모달 데이터에 잘 작동할 수 있는 콘볼루션 신경망을 제안하였다. 우리는 데이터가 포함하는 모달의 수에 반비례 하도록 scale factor 구성하고 이를 입력 크기조절에 사용하였다. 입력의 크기를 조절하여, 네트워크는 특징맵의 크기를 모달의 수와 상관없이 일정하게 유지할 수 있었다. 또한 제안하는 입력 크기조절 방법은 네트워크의 dead filter 의 수를 감소 시켰고, 이는 네트워크가 자신의 capacity 를 잘 활용한다는 것을 의미한다. 또 제안된 네트워크는 특징맵을 구성할 때 다양한 모달을 활용하였고, 이는 네트워크가 모달간의 상관관계를 학습했다는 것을 의미한다. 그 결과, 제안된 네트워크의 성능은 입력 크기조절이 없는 일반적인 네트워크보다 높은 성능을 보여주었다. 또한 우리는 전이학습의 개념을 이용하여 네트워크를 모달의 수가 많은 데이터부터 차례대로 학습시켰다. 전이학습을 통하여 네트워크가 학습되었을 때, 제안된 네트워크는 특정 모달의 조합 경우만을 위해 학습된 네트워크보다 높은 성능을 보여준다.
본 논문에서는 총 무게 42 kg 이내의 요구사항을 토대로 차세대소형위성 2호 영상 레이다 시스템을 개발한 결과를 보고한다. 차세대소형위성 2호는 소형급 인공위성으로, 탑재체의 무게 비중이 전체 무게 대비 약 40% 정도를 차지하도록 설계하였다. 영상 레이다 시스템은 안테나, RF송수신기, 기저대역 신호처리기, 전력부 등으로 구성되며, 이 중에서 특히 무게 비중이 큰 부품은 영상 레이다의 핵심인 안테나이다. 안테나 설계시 이득, 효율 등을 고려한 다양한 선택이 가능하지만, 차세대소형위성 2호 사업에서 요구하는 무게, 전력 및 해상도 등을 반영하여 Micro-strip Patch Array 안테나를 채택하여 설계하였다. 차세대소형위성 2호의 임무 요구 조건에 부합하도록 안테나의 주파수는 9.65 GHz, 이득은 42.7 dBi 그리고 반사손실은 -15 dB로 규정하여 개발하였으며, 차량에 탑재한 현장시험을 통하여 요구 성능의 충족 여부를 검증하였다.
본 논문에서는 차세대소형위성2호의 X 대역 합성 개구 레이더(SAR; synthetic aperture radar)에 탑재하기 위한 고출력 송·수신 모듈의 설계 및 개발에 관하여 논한다. 모듈은 X 대역의 대상 주파수 범위에서 100 MHz 의 대역폭을 갖는 고출력 펄스 신호를 출력하며, 수신신호에 대해 저잡음 증폭 기능을 수행한다. 제작된 모듈의 송신경로는 200 watt (53.01 dBm) 이상의 출력 신호 세기, 0.35 dB의 펄스폭 기울기, 송신 신호 출력간 0.04 dB 의 신호 세기 변화 및 1.7 ˚ 의 위상 변화를 갖고, 수신경로는 3.81 dB 의 잡음지수, 37.38 ~ 37.46 dB 의 이득을 가짐으로써, 요구되는 성능을 만족함을 확인하였다. 제작된 모듈은 차세대소형위성2호 비행모델에 장착되어 있으며, 추후 누리호에 탑재되어 발사될 예정이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.