• 제목/요약/키워드: Advanced Power Reactor+

검색결과 402건 처리시간 0.024초

Design of a direct-cycle supercritical CO2 nuclear reactor with heavy water moderation

  • Petroski, Robert;Bates, Ethan;Dionne, Benoit;Johnson, Brian;Mieloszyk, Alex;Xu, Cheng;Hejzlar, Pavel
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.877-887
    • /
    • 2022
  • A new reactor concept is described that directly couples a supercritical CO2 (sCO2) power cycle with a CO2-cooled, heavy water moderated pressure tube core. This configuration attains the simplification and economic potential of past direct-cycle sCO2 concepts, while also providing safety and power density benefits by using the moderator as a heat sink for decay heat removal. A 200 MWe design is described that heavily leverages existing commercial nuclear technologies, including reactor and moderator systems from Canadian CANDU reactors and fuels and materials from UK Advanced Gas-cooled Reactors (AGRs). Descriptions are provided of the power cycle, nuclear island systems, reactor core, and safety systems, and the results of safety analyses are shown illustrating the ability of the design to withstand large-break loss of coolant accidents. The resulting design attains high efficiency while employing considerably fewer systems than current light water reactors and advanced reactor technologies, illustrating its economic promise. Prospects for the design are discussed, including the ability to demonstrate its technologies in a small (~20 MWe) initial system, and avenues for further improvement of the design using advanced technologies.

THE DESIGN FEATURES OF THE ADVANCED POWER REACTOR 1400

  • Lee, Sang-Seob;Kim, Sung-Hwan;Suh, Kune-Yull
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.995-1004
    • /
    • 2009
  • The Advanced Power Reactor 1400 (APR1400) is an evolutionary advanced light water reactor (ALWR) based on the Optimized Power Reactor 1000 (OPR1000), which is in operation in Korea. The APR1400 incorporates a variety of engineering improvements and operational experience to enhance safety, economics, and reliability. The advanced design features and improvements of the APR1400 design include a pilot operated safety relief valve (POSRV), a four-train safety injection system with direct vessel injection (DVI), a fluidic device (FD) in the safety injection tank, an in-containment refueling water storage tank (IRWST), an external reactor vessel cooling system, and an integrated head assembly (IHA). Development of the APR1400 started in 1992 and continued for ten years. The APR1400 design received design certification from the Korean nuclear regulatory body in May of2002. Currently, two construction projects for the APR1400 are in progress in Korea.

A Takagi-Sugeno fuzzy power-distribution method for a prototypical advanced reactor considering pump degradation

  • Yuan, Yue;Coble, Jamie
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.905-913
    • /
    • 2017
  • Advanced reactor designs often feature longer operating cycles between refueling and new concepts of operation beyond traditional baseload electricity production. Owing to this increased complexity, traditional proportional-integral control may not be sufficient across all potential operating regimes. The prototypical advanced reactor (PAR) design features two independent reactor modules, each connected to a single dedicated steam generator that feeds a common balance of plant for electricity generation and process heat applications. In the current research, the PAR is expected to operate in a load-following manner to produce electricity to meet grid demand over a 24-hour period. Over the operational lifetime of the PAR system, primary and intermediate sodium pumps are expected to degrade in performance. The independent operation of the two reactor modules in the PAR may allow the system to continue operating under degraded pump performance by shifting the power production between reactor modules in order to meet overall load demands. This paper proposes a Takagi-Sugeno (T-S) fuzzy logic-based power distribution system. Two T-S fuzzy power distribution controllers have been designed and tested. Simulation shows that the devised T-S fuzzy controllers provide improved performance over traditional controls during daily load-following operation under different levels of pump degradation.

APR1000 원자로용기의 환경피로 평가 (Environmental Fatigue Evaluation of APR1000 Reactor Vessel)

  • 김종민;김용환
    • 한국전산구조공학회논문집
    • /
    • 제26권3호
    • /
    • pp.207-212
    • /
    • 2013
  • APR1000(Advanced Power Reactor 1000)은 기존의 OPR1000(Optimized Power Reactor 1000)에 60년 설계수명, 국부주파수제어운전, 0.3g 안전정지지진하중 적용 등의 향상된 설계특성(Advanced Design Feature)을 적용하여 개선한 수출형 1000MW 원전이다. 이 논문에서는 Reg. Guide 1.207에서 요구하는 원자로냉각재 환경을 고려한 피로 평가를 원자로용기에 대하여 평가하였다. 원자로용기에서 비교적 누적사용계수가 높은 출구노즐을 대상으로 평가를 수행하였으며 출구노즐은 구조적 건전성을 만족하는 것으로 평가되었다.

Impact of axial power distribution on thermal-hydraulic characteristics for thermionic reactor

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3910-3917
    • /
    • 2021
  • Reactor fuel's power distribution plays a vital role in designing the new generation thermionic Space Reactor Power Systems (SRPS). In this paper, the 1/12th SPACE-R's full reactor core was numerically analyzed with two kinds of different axial power distribution, to identify their impacts on thermal-hydraulic and thermoelectric characteristics. In the benchmark study, the maximum error between numerical results and existing data or design values ranged from 0.2 to 2.2%. Four main conclusions were obtained in the numerical analysis: a) The axial power distribution has less impact on coolant temperature. b) Axial power distribution influenced the emitter temperature distribution a lot, when the core power was cosine distributed, the maximum temperature of the emitter was 194 K higher than that of the uniform power distribution. c) Comparing to the cosine axial power distribution, the uniform axial power distribution would make the maximum temperature in each component of the reactor core much lower, reducing the requirements for core fuel material. d) Voltage and current distribution were similar to the axial electrode temperature distribution, and the axial power distribution has little effect on the output power.

1,500MW대형원전 정지/저출력 안전성향상을 위한 설계개선안 및 민감도 분석 (Risk and Sensitivity Analysis during the Low Power and Shutdown Operation of the 1,500MW Advanced Power Reactor)

  • 문호림;한덕성;김재갑;이상원;임학규
    • 한국압력기기공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.33-39
    • /
    • 2019
  • An 1,500MW advanced power reactor required the standard design approval by a Korean regulatory body in 2014. The reactor has been designed to have a 4-train independent safety concept and a passive auxiliary feedwater system (PAFS). The full power risk or core damage frequency (CDF) of 1,500MW advanced power reactor has been reduced more than that of APR1400. However, the risk during the low power and shutdown (LPSD) operation should be reduced because CDF of LPSD is about 4.7 times higher than that of internal full power. The purpose of paper is to analysis design alternatives to reduce risk during the LPSD. This paper suggests design alternatives to reduce risk and presents sensitivity analysis results.

Simulation of Reactor and Turbine Poler Transients in CANDU 6 Nuclear Power Plants

  • Park, Jong-Woon-;Yeom, Choong-Sub;Kim, Sung-Bae-
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1994년도 춘계학술발표회 초록집
    • /
    • pp.130-137
    • /
    • 1994
  • As a part of developing engineering simulator for CANDU 6 nuclear power plants, present paper gives the tentative simulation results of reactor and turbine power transients including reactor-follow-turbine operation. One point kinetics equations are used for neutron dynamics, iodine and xenon loads. To calculate time-dependent high and low pressure turbine powers and grid frequency deviation, simple first order differential equations are used. In addition, control logics (reactor regulating system, demand power routine, and unit power regulator) used in the plant's process computers have been referenced.

  • PDF

An Investigation of Thermal Margin for External Reactor Vessel Cooling(ERVC) in Large Advanced Light Water Reactors(ALWR)

  • Park, Jong-Woon;Jerng, Dong-Wook
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.473-478
    • /
    • 1997
  • A severe accident management strategy, in-vessel retention corium through external reactor vessel cooling(ERVC) is being studied worldwide as a means to prevent reactor vessel failure following a core melt accident. An evaluation of feasibility of this ERVC for a large Advanced Light Water Reactor (ALWR) is presented. To account for the coolability of corium and metal in the reactor vessel, a thermal analysis is performed using an existing method. Results show that the peak heat flux along the inner surface of the reactor vessel lower head has a relatively smaller margin than a small capacity reactor such as AP600 in regards with the critical heat flux attainable at the outer surface of the reactor vessel lower head.

  • PDF

Conceptual design study on Plutonium-238 production in a multi-purpose high flux reactor

  • Jian Li;Jing Zhao;Zhihong Liu;Ding She;Heng Xie;Lei Shi
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.147-159
    • /
    • 2024
  • Plutonium-238 has always been considered as the one of the promising radioisotopes for space nuclear power supply, which has long half-life, low radiation protection level, high power density, and stable fuel form at high temperatures. The industrial-scale production of 238Pu mainly depends on irradiating solid 237NpO2 target in high flux reactors, however the production process faces problems such as large fission loss and high requirements for product quality control. In this paper, a conceptual design study of producing 238Pu in a multi-purpose high flux reactor was evaluated and analyzed, which includes a sensitivity analysis on 238Pu production and a further study on the irradiation scheme. It demonstrated that the target structure and its location in the reactor, as well as the operation scheme has an impact on 238Pu amount and product quality. Furthermore, the production efficiency could be improved by optimizing target material concentration, target locations in the core and reflector. This work provides technical support for irradiation production of 238Pu in high flux reactors.