• 제목/요약/키워드: Advanced Model

검색결과 6,400건 처리시간 0.043초

A Dual Modeling Method for a Real-Time Palpation Simulator

  • Kim, Sang-Youn;Park, Se-Kil;Park, Jin-Ah
    • Journal of Information Processing Systems
    • /
    • 제8권1호
    • /
    • pp.55-66
    • /
    • 2012
  • This paper presents a dual modeling method that simulates the graphic and haptic behavior of a volumetric deformable object and conveys the behavior to a human operator. Although conventional modeling methods (a mass-spring model and a finite element method) are suitable for the real-time computation of an object's deformation, it is not easy to compute the haptic behavior of a volumetric deformable object with the conventional modeling method in real-time (within a 1kHz) due to a computational burden. Previously, we proposed a fast volume haptic rendering method based on the S-chain model that can compute the deformation of a volumetric non-rigid object and its haptic feedback in real-time. When the S-chain model represents the object, the haptic feeling is realistic, whereas the graphical results of the deformed shape look linear. In order to improve the graphic and haptic behavior at the same time, we propose a dual modeling framework in which a volumetric haptic model and a surface graphical model coexist. In order to inspect the graphic and haptic behavior of objects represented by the proposed dual model, experiments are conducted with volumetric objects consisting of about 20,000 nodes at a haptic update rate of 1000Hz and a graphic update rate of 30Hz. We also conduct human factor studies to show that the haptic and graphic behavior from our model is realistic. Our experiments verify that our model provides a realistic haptic and graphic feeling to users in real-time.

SysML DSL 기반 플랜트 모델링 케이스 (A Plant Modeling Case Based on SysML Domain Specific Language)

  • 이태경;차재민;김준영;신중욱;김진일;염충섭
    • 시스템엔지니어링학술지
    • /
    • 제13권2호
    • /
    • pp.49-56
    • /
    • 2017
  • Implementation of Model-based Systems Engineering(MBSE) depends on a model supporting efficient communication among engineers from various domains. And SysML is designed to create models supporting MBSE but unfortunately, SysML itself is not practical enough to be used in real-world engineering projects. SysML is designed to express generic systems and requires specialized knowledge, so a model written in SysML is less capable of supporting communication between a systems engineer and a sub-system engineer. Domain Specific Languages(DSL) can be a great solution to overcome the weakness of the standard SysML. A SysML based DSL means a customized SysML for a specific engineering domain. Unfortunately, current researches on SysML Domain Specific Language(DSL) for the plant engineering industry are still on the early stage. So as the first step, we have developed our own SysML based Piping & Instrumentation Diagram (P&ID) creation environment and P&ID itself of a specific plant system, using a widely used SysML authoring tool called MagicDraw. P&ID is one of the most critical output during the plant design phase, which contains all information required for the plant construction phase. So a SysML based P&ID has a great potential to enhance the communication among plant engineers of various disciplines.

Systems-Level Analysis of Genome-Scale In Silico Metabolic Models Using MetaFluxNet

  • Lee, Sang-Yup;Woo, Han-Min;Lee, Dong-Yup;Choi, Hyun-Seok;Kim, Tae-Yong;Yun, Hong-Seok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권5호
    • /
    • pp.425-431
    • /
    • 2005
  • The systems-level analysis of microbes with myriad of heterologous data generated by omics technologies has been applied to improve our understanding of cellular function and physiology and consequently to enhance production of various bioproducts. At the heart of this revolution resides in silico genome-scale metabolic model, In order to fully exploit the power of genome-scale model, a systematic approach employing user-friendly software is required. Metabolic flux analysis of genome-scale metabolic network is becoming widely employed to quantify the flux distribution and validate model-driven hypotheses. Here we describe the development of an upgraded MetaFluxNet which allows (1) construction of metabolic models connected to metabolic databases, (2) calculation of fluxes by metabolic flux analysis, (3) comparative flux analysis with flux-profile visualization, (4) the use of metabolic flux analysis markup language to enable models to be exchanged efficiently, and (5) the exporting of data from constraints-based flux analysis into various formats. MetaFluxNet also allows cellular physiology to be predicted and strategies for strain improvement to be developed from genome-based information on flux distributions. This integrated software environment promises to enhance our understanding on metabolic network at a whole organism level and to establish novel strategies for improving the properties of organisms for various biotechnological applications.