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What is the Foundation Model?

The foundation model (FM) is a family of machine 
artificial intelligence (AI) models that are generally 
trained by self-supervised learning using a large volume 
of unannotated dataset and can be adapted to various 
downstream tasks [1]. 

The most well-known examples of FMs are large language 
models (LLMs), such as ChatGPT [2]. Similar to ChatGPT, 
LLMs typically consist of billions of parameters and are 
designed to perform various natural language tasks. An 
LLM is initially pretrained to predict next words that follow 
a given input text (referred to as ‘pretext task’), through 
which the LLM learns the semantics and structure of 
languages. With subsequent fine-tuning by human feedback, 
the LLM then acquires capabilities to generate natural and 
plausible responses to a wide range of queries (referred to 
as ‘downstream tasks’).

Training for the pretext task is typically achieved through 
self-supervised learning, using a massive unannotated 
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dataset. The self-supervision dataset for the LLMs comprises 
a set of sentences with masked words generated by a 
computer without human involvement. The model is then 
trained to predict the masked words by looking at the 
unmasked part of the text. By utilizing vast amounts of 
self-supervised dataset, the model learns a semantically 
meaningful ‘representation’ (often colloquially referred to 
as feature) of the original dataset. These representations 
can be used for downstream tasks after fine-tuning with 
additional annotated datasets [3] or for generating new 
content in generative AI models [4].

‘Transformers,’ a special form of deep learning model, 
which can deal with a large volume of unstructured 
dataset [5] have been the architectural choice of many 
FMs. Transformers were originally developed for natural 
language processing to overcome the limitations of recurrent 
neural networks in solving sequence-to-sequence tasks. 
However, the expressivity and scalability of transformers 
based on self-attention mechanisms have rapidly expanded 
their application to other domains. Transformers applied 
specifically to computer vision are called vision transformers 
(ViTs) [6], and have shown remarkable success in improving 
the performance of convolutional neural networks.

Characteristics of FM

FMs demonstrate emergent abilities, which refer to the 
AI’s capability to perform certain skills that were not 
explicitly intended during training, and these abilities 
improve as the scale of the model increases [7]. This is 
especially advantageous as it provides the potential for 
zero-shot or few-shot predictions in a novel task without 
additional training using an annotated dataset, which 
significantly reduces dataset construction efforts. Another 
characteristic of FMs is their ability to proficiently encode 
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human instructions known as prompts and seamlessly 
incorporate them into their predictions [8]. This enables 
users to interact naturally with FMs through human-friendly 
prompts. FMs also have strengths in their capability to 
handle multimodal datasets. As transformers can flexibly 
handle various input types, we can efficiently build an AI 
model that can jointly learn the representation of inputs 
using a dataset from multiple sources [9]. The important 
concepts and terms related to FMs are listed in Table 1.

Types of FM

As explained earlier, LLMs are among the most actively 
developed FMs [2]. Another family of FM includes the vision 
or visual language foundation models (VLMs). VLMs learn 
the visual representations of objects from a large-scale 
image dataset and utilize these learned representations 
for downstream computer vision or vision-language tasks. 
The Segment Anything Model (SAM) [10] is a pioneering 
example of VLM developed to perform the pretext task of 
generating masks for all the objects in an image. The SAM 
can handle various types of prompts and demonstrates zero-
shot generalization capabilities for novel objects or tasks. 
Contrastive language-image pretraining (CLIP) [11] is another 
VLM with the pretext task of aligning visual and textual 
representations for image and text pairs, and it demonstrates 
impressive zero-shot classification performance. There are 

other types of visual LLMs that utilize existing ViTs and LLMs 
as the encoder and decoder, respectively, and connect them 
using trainable alignment layers [12]. 

The most advanced and sophisticated type of FMs is 
the multimodal FM for integrating datasets from multiple 
domains or sources. These FMs enable AI to learn universal 
and robust representations of objects and concepts similar 
to the human cognitive system and are the most promising 
direction for implementing generalist AI [13]. 

Medical Applications

FM in medicine is currently one of the most active 
areas of AI research owing to its technically challenging 
nature and societal impact. While early studies focused 
on evaluating the performance of commercial general-
purpose LLMs in clinical tasks [14,15], LLMs fine-tuned to 
the medical domain have been actively proposed [16-19] 
to further improve the performance in the clinical context. 
Variants of SAM [20] and visual LLMs [21,22] fine-tuned 
to the medical domain have been continuously introduced, 
and a CLIP-based VLM has also been proposed for zero-shot 
diagnosis of diseases in various modalities [23-25].

Recently, the first demonstration of multimodal medical 
FMs was proposed [26-28]. While these FMs are still in the 
proof-of-concept phase and mainly focus on interpreting 
medical images, they have shown promising capabilities for 

Table 1. Terms related to foundation models

Term Definition Opposite/contrasting terms
Machine learning A type of AI for developing systems that can learn or improve performance 

from based on the training dataset.
Rule-based system

Deep learning A type of machine learning algorithms using artificial neural network with 
many layers to learn and utilize the representation of training dataset.

Transformer A type of deep learning model architecture with encoder and decoder blocks 
using self-attention mechanism to solve sequence-to-sequence problems. 

Generative AI models A type of deep learning models trained to generate various types 
of contents conditionally based on the prompts.

Discriminative models

Large language models A large-scale generative deep learning models trained to solve various 
natural language processing tasks. 

Statistical language models

Generative pre-trained 
transformers (GPT)

A type of large language model using decoder part of transformer trained 
to predict or generate text based on the input.

Self-supervised learning A machine learning algorithm to learn the representation of dataset by 
generating self-supervision from the part of unannotated input dataset.

Supervised learning 

Prompt or instruction Additional queries given to generative AI models to generate desired output.
Generalist or general AI 

(GAI)
An AI system that can learn from various type of dataset and solve wide range 

of novel tasks via adaptation.
Specialist or Narrow AI

AI = artificial intelligence 
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generalization to various high-performance clinical tasks. 
The various types of FM used in medicine and reference 
models are listed in Table 2.

Opportunities and Risks

FMs have immense potential to ease imminent healthcare 
problems that cannot be handled by conventional 
approaches using specialized or narrow AI models [1,29]. For 
patients, FMs would provide a natural and friendly interface 
and better access to clinical information, which reduces 
the knowledge gap. The versatile and interactive nature of 
FMs plays a critical role in assisting clinicians to make more 
confident and efficient decisions. For medical institutions, 
FMs would greatly reduce the burden of administrative or 
non-clinical tasks, which would facilitate the allocation of 
limited healthcare resources to unmet needs. 

However, there are several challenges and risks that 
must be addressed before the deployment of FMs in 
clinical practice. In terms of technology, we need to 
better understand how FMs work, which will enable us to 
better utilize emergent abilities and prevent hallucinations 
generated by FM. From a clinical perspective, there are no 
established protocols or consensus on how to evaluate the 
efficacy and safety of FMs and how to regulate them, mainly 
because of the unlimited input and output of FMs [30]. For 
FM developers in the medical field, the integration of FMs 
with existing healthcare systems and the design of user 
interfaces that minimize misuse without compromising 
capabilities of FMs remain additional challenges. 
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