• 제목/요약/키워드: Advanced Model

검색결과 6,436건 처리시간 0.04초

Analytic Modeling of the Xenon Oscillation Due to Control Rod Movement

  • Song, Jae-Seung;Cho, Nam-Zin;Zee, Sung-Quun
    • Nuclear Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.80-87
    • /
    • 1999
  • An analytic axial xenon oscillation model was developed for pressurized water reactor analysis. The model employs an equation system for axial difference parameters that was derived from the two-group one-dimensional diffusion equation with control rod modeling and coupled with xenon and iodine balance equations. The spatial distributions of nu, xenon, and iodine were expanded by the Fourier sine series, resulting in cancellation of the flux-xenon coupled non-linearity. An inhomogeneous differential equation system for the axial difference parameters, which gives the relationship between power, iodine and xenon axial differences in the case of control rod movement, was derived and solved analytically. The analytic solution of the axial difference parameters can directly provide with the variation of axial power difference during xenon oscillation. The accuracy of the model is verified by benchmark calculations with one-dimensional reference core calculations.

  • PDF

신형경수로 1400을 위한 신뢰성 평가 (Reliability Evaluation for the Advanced Pressurized water Reactor 1400)

  • 강영식
    • 한국안전학회지
    • /
    • 제16권3호
    • /
    • pp.125-134
    • /
    • 2001
  • The Advanced Pressurized rater Reactor 1400(APR1400) system is advanced of the successful Korean Nuclear Power Plants(KSNP) design which meets functional needs for safety enhancement reliability improvement, and control in the human-computer monitoring system. Therefore this paper describes the scoring model in order to justify the reliability and safety in APR 1400 under uncertainty. The structure of this paper consists of the human engineering, risk safety, quality function, safety organization management factors of the qualitative factors in chapter 2, and the expectation results of the normalized scoring model in chapter 3. Finally, the proposed reliability model have provided the technical flexibility not only for functional control fields but also for accidents protection systems in APR 1400 under uncertainty.

  • PDF

An Education Model of a Nano-Positioning System for Mechanical Engineers

  • Lee Dong-Yeon;Gweon Dae-Gab
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1702-1715
    • /
    • 2006
  • The increasing use of nano-positioners in a wide variety of laboratory and industrial applications has created a need for nano-mechatronics education in all engineering disciplines. The subject of nano-mechatronics is broad and interdisciplinary. This article focuses on the way nano-mechatronics is taught in department of mechanical engineering at Korea Advanced Institute of Science and Technology (KAIST). As one model of nano-positioning systems, design and experimental methodology is presented in this article. For design phase, the stiffness and resonant frequencies are found analytically and verified by using a commercial finite element analysis program. Next, for experimental phase, various tests are performed to access the performances of the designed nano-positioner, for example, sine-tracking, multi-step response and travel-range check etc. Finally, the definition of 'separation frequency' is described and some comments are discussed.

Effective numerical approach to assess low-cycle fatigue behavior of pipe elbows

  • Jang, Heung Woon;Hahm, Daegi;Jung, Jae-Wook;Hong, Jung-Wuk
    • Nuclear Engineering and Technology
    • /
    • 제50권5호
    • /
    • pp.758-766
    • /
    • 2018
  • We developed numerical models to efficiently simulate the low-cycle fatigue behavior of a pipe elbow. To verify the model, in-plane cyclic bending tests of pipe elbow specimens were conducted, and a through crack occurred in the vicinity of the crown. Numerical models based on the erosion method and tie-break method are developed, and the numerical results are compared with experimental results. The calculated results of both models are in good agreement with experimental results, and the model using the tie-break method possesses two times faster calculation speed. Therefore, the numerical model based on the tie-break method would be beneficial to evaluate the strength of piping systems under seismic loadings.

Determination of Multilayer Earth Model Using Genetic Algorithm

  • Kang, Min-Jae;Boo, Chang-Jin;Kim, Ho-Chan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권3호
    • /
    • pp.171-175
    • /
    • 2007
  • In this paper a methodology has been proposed to compute the parameters of the multilayer earth model using a genetic algorithm(GA). The results provided by the GA constitute the indispensable data that can be used in circuital or field simulations of grounding systems. This methodology allows to proceed toward a very efficient simulation of the grounding system and an accurate calculation of potential on the ground's surface. The sets of soil resistivity used for GA are measured in Jeju area.

인공지능을 활용한 기계학습 앙상블 모델 개발 (Development of Machine Learning Ensemble Model using Artificial Intelligence)

  • 이근원;원윤정;송영범;조기섭
    • 열처리공학회지
    • /
    • 제34권5호
    • /
    • pp.211-217
    • /
    • 2021
  • To predict mechanical properties of secondary hardening martensitic steels, a machine learning ensemble model was established. Based on ANN(Artificial Neural Network) architecture, some kinds of methods was considered to optimize the model. In particular, interaction features, which can reflect interactions between chemical compositions and processing conditions of real alloy system, was considered by means of feature engineering, and then K-Fold cross validation coupled with bagging ensemble were investigated to reduce R2_score and a factor indicating average learning errors owing to biased experimental database.

Effect of Transport Capacity Formula on Spatial Distribution of Soil Erosion

  • Nguyen, Van Linh;Yeon, Minho;Cho, Seongkeun;Lee, Giha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.150-150
    • /
    • 2021
  • Soil erosion due to climate change is one of the global environmental issues. Especially, Korea is vulnerable to soil erosion as the frequency of extreme rainfall events and rainfall intensity are increasing. Soil erosion causes various problems such as reduced farmlands, deterioration of water quality in rivers, etc. To these severe problems, understanding the process of soil erosion is the first process. Then, it is necessary to quantify and analyze soil ersoion using an erosion model. Soil erosion models are divided into empirical, conceptual, and physics-based models according to the structures and characteristics of models. This study used GSSHA (Gridded Surface Subsurface Hydrologic Analysis), the physics-based erosion model, running on WMS (Watershed Modeling System) to analyze soil erosion vulnerability of the CheonCheon watershed. In addition, we compared the six sediment transport capacity formulas provided in the model and evaluated the equations fir on this study site. Therefore, this result can be as a primary tool for soil conservation management.

  • PDF

A probabilistic micromechanical framework for self-healing polymers containing microcapsules

  • D.W. Jin;Taegeon Kil;H.K. Lee
    • Smart Structures and Systems
    • /
    • 제32권3호
    • /
    • pp.167-177
    • /
    • 2023
  • A probabilistic micromechanical framework is proposed to quantify numerically the self-healing capabilities of polymers containing microcapsules. A two-step self-healing process is designed in this study: A probabilistic micromechanical framework based on the ensemble volume-averaging method is derived for the polymers, and a hitting probability model combined with a crack nucleation model is then utilized for encountering microcapsules and microcracks. Using this framework, a series of parametric investigations are performed to examine the influence of various model parameters (e.g., the volume fraction of microcapsules, microcapsule radius, radius ratio of microcracks to microcapsules, microcrack aspect ratio, and scale parameter) on the self-healing capabilities of the polymers. The proposed framework is also implemented into a finite element code to solve the self-healing behavior of tapered double cantilever beam specimens.

성능/교전 효과도의 상호 분석이 가능한 전투 개체 기반의 모델링 방법론 - 제2부 : 상세 모델 설계 및 모델 구현 (Combat Entity Based Modeling Methodology to Enable Joint Analysis of Performance/Engagement Effectiveness - Part 2 : Detailed Model Design & Model Implementation)

  • 서경민;최창범;김탁곤
    • 한국군사과학기술학회지
    • /
    • 제17권2호
    • /
    • pp.235-247
    • /
    • 2014
  • Based on two dimensional model partition method proposed in Part 1, Part 2 provides detailed model specification and implementation. To mathematically delineate a model's behaviors and interactions among them, we extend the DEVS (Discrete Event Systems Specification) formalism and newly propose CE-DEVS (Combat Entity-DEVS) for an upper abstraction sub-model of a combat entity model. The proposed CE-DEVS additionally define two sets and one function to reflect essential semantics for the model's behaviors explicitly. These definitions enable us to understand and represent the model's behaviors easily since they eliminate differences of meaning between real-world expressions and model specifications. For model implementation, upper abstraction sub-models are implemented with DEVSim++, while the lower sub-models are realized using the C++ language. With the use of overall modeling techniques proposed in Part 1 and 2, we can conduct constructive simulation and assess factors about combat logics as well as battle field functions of the next-generation combat entity, minimizing additional modeling efforts. From the anti-torpedo warfare experiment, we can gain interesting experimental results regarding engagement situations employing developing weapons and their tactics. Finally, we expect that this work will serve an immediate application for various engagement warfare.

사람과 로봇의 사회적 상호작용을 위한 로봇의 가치효용성 기반 동기-감정 생성 모델 (Robot's Motivational Emotion Model with Value Effectiveness for Social Human and Robot Interaction)

  • 이원형;박정우;김우현;이희승;정명진
    • 제어로봇시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.503-512
    • /
    • 2014
  • People would like to be socially engaged not only with humans but also with robots. One of the most common ways in the robotic field to enhance human robot interaction is to use emotion and integrate emotional concepts into robots. Many researchers have been focusing on developing a robot's emotional expressions. However, it is first necessary to establish the psychological background of a robot's emotion generation model in order to implement the whole process of a robot's emotional behavior. Therefore, this article suggests a robot's motivational emotion model with value effectiveness from a Higgins' motivation definition, regulatory focus theory, and Circumplex model. For the test, a game with the best-two-out-of-three rule is introduced. Each step of the game was evaluated by the proposed model. As the results imply, the proposed model generated psychologically appropriate emotions for a robot in the given situation. The empirical survey remains for future work to prove that this research improves social human robot interaction.