• Title/Summary/Keyword: Advanced Malware

Search Result 59, Processing Time 0.025 seconds

Analysis of Deep Learning Methods for Classification and Detection of Malware

  • Moon, Phil-Joo
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.291-297
    • /
    • 2021
  • Recently, as the number of new and variant malicious codes has increased exponentially, malware warnings are being issued to PC and smartphone users. Malware is becoming more and more intelligent. Efforts to protect personal information are becoming more and more important as social issues are used to stimulate the interest of PC users and allow users to directly download malicious codes. In this way, it is difficult to prevent malicious code because malicious code infiltrates in various forms. As a countermeasure to solve these problems, many studies are being conducted to apply deep learning. In this paper, we investigate and analyze various deep learning methods to detect and classify malware.

Malware Classification using Dynamic Analysis with Deep Learning

  • Asad Amin;Muhammad Nauman Durrani;Nadeem Kafi;Fahad Samad;Abdul Aziz
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.49-62
    • /
    • 2023
  • There has been a rapid increase in the creation and alteration of new malware samples which is a huge financial risk for many organizations. There is a huge demand for improvement in classification and detection mechanisms available today, as some of the old strategies like classification using mac learning algorithms were proved to be useful but cannot perform well in the scalable auto feature extraction scenario. To overcome this there must be a mechanism to automatically analyze malware based on the automatic feature extraction process. For this purpose, the dynamic analysis of real malware executable files has been done to extract useful features like API call sequence and opcode sequence. The use of different hashing techniques has been analyzed to further generate images and convert them into image representable form which will allow us to use more advanced classification approaches to classify huge amounts of images using deep learning approaches. The use of deep learning algorithms like convolutional neural networks enables the classification of malware by converting it into images. These images when fed into the CNN after being converted into the grayscale image will perform comparatively well in case of dynamic changes in malware code as image samples will be changed by few pixels when classified based on a greyscale image. In this work, we used VGG-16 architecture of CNN for experimentation.

On-line Shared Platform Evaluation Framework for Advanced Persistent Threats

  • Sohn, Dongsik;Lee, Taejin;Kwak, Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2610-2628
    • /
    • 2019
  • Advanced persistent threats (APTs) are constant attacks of specific targets by hackers using intelligent methods. All current internal infrastructures are constantly subject to APT attacks created by external and unknown malware. Therefore, information security officers require a framework that can assess whether information security systems are capable of detecting and blocking APT attacks. Furthermore, an on-line evaluation of information security systems is required to cope with various malicious code attacks. A regular evaluation of the information security system is thus essential. In this paper, we propose a dynamic updated evaluation framework to improve the detection rate of internal information systems for malware that is unknown to most (over 60 %) existing static information security system evaluation methodologies using non-updated unknown malware.

ELPA: Emulation-Based Linked Page Map Analysis for the Detection of Drive-by Download Attacks

  • Choi, Sang-Yong;Kim, Daehyeok;Kim, Yong-Min
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.422-435
    • /
    • 2016
  • Despite the convenience brought by the advances in web and Internet technology, users are increasingly being exposed to the danger of various types of cyber attacks. In particular, recent studies have shown that today's cyber attacks usually occur on the web via malware distribution and the stealing of personal information. A drive-by download is a kind of web-based attack for malware distribution. Researchers have proposed various methods for detecting a drive-by download attack effectively. However, existing methods have limitations against recent evasion techniques, including JavaScript obfuscation, hiding, and dynamic code evaluation. In this paper, we propose an emulation-based malicious webpage detection method. Based on our study on the limitations of the existing methods and the state-of-the-art evasion techniques, we will introduce four features that can detect malware distribution networks and we applied them to the proposed method. Our performance evaluation using a URL scan engine provided by VirusTotal shows that the proposed method detects malicious webpages more precisely than existing solutions.

Image Generation Method for Malware Detection Based on Machine Learning (기계학습 기반 악성코드 검출을 위한 이미지 생성 방법)

  • Jeon, YeJin;Kim, Jin-e;Ahn, Joonseon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.381-390
    • /
    • 2022
  • Many attempts have been made to apply image recognition based on machine learning which has recently advanced dramatically to malware detection. They convert executable files to images and train deep learning networks like CNN to recognize or categorize dangerous executable files, which shows promising results. In this study, we are looking for an effective image generation method that may be used to identify malware using machine learning. To that end, we experiment and assess the effectiveness of various image generation methods in relation to malware detection. Then, we suggest a linear image creation method which represents control flow more clearly and our experiment shows our method can result in better precision in malware detection.

Framework Design for Malware Dataset Extraction Using Code Patches in a Hybrid Analysis Environment (코드패치 및 하이브리드 분석 환경을 활용한 악성코드 데이터셋 추출 프레임워크 설계)

  • Ki-Sang Choi;Sang-Hoon Choi;Ki-Woong Park
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.3
    • /
    • pp.403-416
    • /
    • 2024
  • Malware is being commercialized and sold on the black market, primarily driven by financial incentives. With the increasing demand driven by these sales, the scope of attacks via malware has expanded. In response, there has been a surge in research efforts leveraging artificial intelligence for detection and classification. However, adversaries are integrating various anti-analysis techniques into their malware to thwart analytical efforts. In this study, we introduce the "Malware Analysis with Dynamic Extraction (MADE)" framework, a hybrid binary analysis tool devised to procure datasets from advanced malware incorporating Anti-Analysis techniques. The MADE framework has the proficiency to autonomously execute dynamic analysis on binaries, encompassing those laden with Anti-VM and Anti-Debugging defenses. Experimental results substantiate that the MADE framework can effectively circumvent over 90% of diverse malware implementations using Anti-Analysis techniques and can adeptly extract relevant datasets.

Investigation of the SPRT-Based Android Evasive Malware

  • Ho, Jun-Won
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.23-27
    • /
    • 2022
  • In this paper, we explore a new type of Android evasive malware based on the Sequential Probability Ratio Test (SPRT) that does not perform malicious task when it discerns that dynamic analyzer is input generator. More specifically, a new type of Android evasive malware leverages the intuition that dynamic analyzer provides as many inputs within a certain amount of time as possible to Android apps to be tested, while human users generally provide necessary inputs to Android apps to be used. Under this intuition, it harnesses the SPRT to discern whether dynamic analyzer runs in Android system or not in such a way that the number of inputs per time slot exceeding a preset threshold is regarded as evidence that inputs are provided by dynamic analyzer, expediting the SPRT to decide that dynamic analyzer operates in Android system and evasive malware does not carry out malicious task.

The attacker group feature extraction framework : Authorship Clustering based on Genetic Algorithm for Malware Authorship Group Identification (공격자 그룹 특징 추출 프레임워크 : 악성코드 저자 그룹 식별을 위한 유전 알고리즘 기반 저자 클러스터링)

  • Shin, Gun-Yoon;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • Recently, the number of APT(Advanced Persistent Threats) attack using malware has been increasing, and research is underway to prevent and detect them. While it is important to detect and block attacks before they occur, it is also important to make an effective response through an accurate analysis for attack case and attack type, these respond which can be determined by analyzing the attack group of such attacks. Therefore, this paper propose a framework based on genetic algorithm for analyzing malware and understanding attacker group's features. The framework uses decompiler and disassembler to extract related code in collected malware, and analyzes information related to author through code analysis. Malware has unique characteristics that only it has, which can be said to be features that can identify the author or attacker groups of that malware. So, we select specific features only having attack group among the various features extracted from binary and source code through the authorship clustering method, and apply genetic algorithm to accurate clustering to infer specific features. Also, we find features which based on characteristics each group of malware authors has that can express each group, and create profiles to verify that the group of authors is correctly clustered. In this paper, we do experiment about author classification using genetic algorithm and finding specific features to express author characteristic. In experiment result, we identified an author classification accuracy of 86% and selected features to be used for authorship analysis among the information extracted through genetic algorithm.

A Realtime Malware Detection Technique Using Multiple Filter (다중 필터를 이용한 실시간 악성코드 탐지 기법)

  • Park, Jae-Kyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.77-85
    • /
    • 2014
  • Recently, several environment damage caused by malicious or suspicious code is increasing. We study comprehensive response system actively for malware detection. Suspicious code is installed on your PC without your consent, users are unaware of the damage. Also, there are need to technology for realtime processing of Big Data. We must develope advanced technology for malware detection. We must analyze the static, dynamic of executable file for fundamentally malware detection in recently and verified by a reputation for verification. It is need to judgment of similarity for realtime response with big data. In this paper, we proposed realtime detection and verification technology using multiple filter. Our malware study suggests a new direction of realtime malware detection.

Compiler Analysis Framework Using SVM-Based Genetic Algorithm : Feature and Model Selection Sensitivity (SVM 기반 유전 알고리즘을 이용한 컴파일러 분석 프레임워크 : 특징 및 모델 선택 민감성)

  • Hwang, Cheol-Hun;Shin, Gun-Yoon;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.537-544
    • /
    • 2020
  • Advances in detection techniques, such as mutation and obfuscation, are being advanced with the development of malware technology. In the malware detection technology, unknown malware detection technology is important, and a method for Malware Authorship Attribution that detects an unknown malicious code by identifying the author through distributed malware is being studied. In this paper, we try to extract the compiler information affecting the binary-based author identification method and to investigate the sensitivity of feature selection, probability and non-probability models, and optimization to classification efficiency between studies. In the experiment, the feature selection method through information gain and the support vector machine, which is a non-probability model, showed high efficiency. Among the optimization studies, high classification accuracy was obtained through feature selection and model optimization through the proposed framework, and resulted in 48% feature reduction and 53 faster execution speed. Through this study, we can confirm the sensitivity of feature selection, model, and optimization methods to classification efficiency.