• Title/Summary/Keyword: Advanced High Strength Steel

Search Result 274, Processing Time 0.024 seconds

Characterization of Product Surface according to Tool Surface Conditions when Forming TRIP1180 Steel Sheets with PVD CrN-coated Tools (PVD CrN 코팅 금형의 TRIP1180 판재 성형 시 금형의 표면상태에 따른 제품 표면특성 평가)

  • J. H. Bang;G. H. Bae;M. Kim;M. G. Lee;H. G. Kim;J. H. Song
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.247-254
    • /
    • 2023
  • This study conducted the wear tests on bending punches coated with PVD CrN and examined the surface quality of the product formed by each punch in the forming of uncoated TRIP1180 sheets. The study quantitatively estimated the surface quality of the product by measuring the roughness and imaging the product surface. The correlation between the punch wear depth and the product surface roughness was quantitatively analyzed. The results showed that before failure occurs, the product roughness was comparable with that of the as-received, and the product surface was smooth without scratches and defects. However, after failure, the punch wear is caused by fretting wear mechanism, and a punch whose coating is not completely peeled plows the product surface, resulting in severe scratches with grooves and ridges on the product surface. Severe wear on the punch surface caused by fretting wear can rapidly degrade the product surface quality as it is directly affected by the punch surface condition, and the product surface quality accurately reflects the punch wear condition.

FE Analysis of Hot Press Forming Process considering the Phase Transformation (상변태를 고려한 핫프레스포밍 공정의 유한요소해석)

  • Kang, Gyeong-Pil;Lee, Kyung-Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.226-229
    • /
    • 2008
  • Hot press forming is an advanced forming technology fur manufacturing of complex and crash-resistant automotive parts using ultra high strength steels. The 3-dimensional FE analysis of hot press forming process, in which process the deformation, heat transfer and phase transformation behavior are fully coupled, is carried out. The vast amount of material properties for the FE analysis is obtained from material properties calculation software which is based on thermodynamic calculations. The overall methodology for the FE analysis of HPF process and the analysis results are discussed here.

  • PDF

Image Enhancement of Simplified Ultrasonic CT Using Frequency Analysis Method

  • Kim, kyung-Cho;Hiroaki Fukuhara;Hisashi Yamawaki
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1627-1632
    • /
    • 2002
  • In this paper, a simplified ultrasonic CT system, which uses the information in three directions, that is, 90°, +45° and -45°about the inspection plane, is applied to the high strength steel, and the frequency analysis method for enhancing the C scan or CT image is developed. This frequency analysis method is based on the frequency response property of the material. By comparing the magnitudes in the frequency domain, the special frequency which shows a significant difference between the welded joint and base material was found and used to obtain a C scan or CT image. Experimental results for several kinds of specimens, having a welded joint by electron beam welding, a weld joint by arc welding, on a fatigue crack, showed that the obtained C scan or CT image has better resolution than the results of previous experiments using the maximum value of the received waveform.

Robust Design of Springback in Sheet Metal Forming (박판 성형 공정에서 스프링백의 강건 설계)

  • Kim, Kyung-Mo;Yin, Jeong-Je
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.41-48
    • /
    • 2013
  • Springback is a very typical dimensional discrepancy phenomenon, which occurs usually on the final stamping parts after the tool loading is removed. Variation of springback leads to amplified variations and problems during assembly of the stamped components, in turn, resulting in quality issues. The variations in the properties of the incoming material and process parameters are the main causes of springback variation. In this research, a robust design methodology which combines orthogonal array based experimental design and design space reduction skim to reduce the springback variation for advanced high strength steel parts in sheet metal forming is suggested. The concept of design space reduction is adapted in the experimental design setup to improve the quality of the obtained solution. The effectiveness of the proposed procedures is illustrated through a robust design of springback in metal forming process of a cross member of auto body.

Stability analysis of the nonuniform functionally graded cylindrical small-scale beam structures: Application in sport structures

  • Changyou Wang;Mostafa Habibi;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.15-29
    • /
    • 2024
  • This research investigates the application of novel functionally graded small-scale materials (FGSMs) in sport and sports structures through an engineering design lens. Functionally graded materials (FGMs) offer tailored material properties, promising enhanced performance and durability. Utilizing an interdisciplinary approach, this study explores the integration of FGSMs in sports equipment and infrastructure. Design considerations specific to sports engineering are emphasized, including lightweight, high-strength materials capable of withstanding dynamic loads. Advanced manufacturing techniques, such as additive manufacturing and nanotechnology, enable precise control over material composition and microstructure. Computational modeling is employed to evaluate the mechanical behavior and performance characteristics of FGSM-based components. Through case studies and comparative analyses, the study showcases the potential of FGSMs to revolutionize sports equipment and structures, offering improved performance, safety, and sustainability. This research contributes to the advancement of sports engineering by exploring the design and application of FGSMs in sport and sports structures.

Effects of Oxygen Partial Pressure on Oxidation Behavior of CMnSi TRIP Steel in an Oxidation-Reduction Scheme

  • Kim, Seong-Hwan;Huh, Joo-Youl;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • An oxidation-reduction scheme is an alternative approach for improving the galvanizability of advanced high-strength steel in the continuous hot-dip galvanizing process. Here, we investigated the effect of oxygen partial pressure ($P_{O_2}$) on the oxidation behavior of a transformation-induced plasticity steel containing 1.5 wt% Si and 1.6 wt% Mn during heating to and holding for 60 s at $700^{\circ}C$ under atmospheres with various $P_{O_2}$ values. Irrespective of $P_{O_2}$, a thin amorphous Si-rich layer of Si-Mn-O was formed underneath the Fe oxide scale (a $Fe_2O_3/Fe_3O_4$ bilayer) in the heating stage. In contrast to Si, Mn tended to segregate at the scale surface as $(Fe,Mn)_2O_3$. The multilayered structure of $(Fe,Mn)_2O_3/Fe_2O_3/Fe_3O_4$/amorphous Si-Mn-O remained even after extended oxidizing at $700^{\circ}C$ for 60 s. $Fe_2O_3$ was the dominantly growing oxide phase in the scale. The enhanced growth rate of $Fe_2O_3$ with increasing $P_{O_2}$ resulted in the formation of more Kirkendall voids in the amorphous Si-rich layer and a less Mn segregation at the scale surface. The mechanisms underlying the absence of FeO and the formation of Kirkendall voids are discussed.

Analysis of Phase Transformation and Temperature History during Hot Stamping Using the Finite Element Method (유한요소해석을 이용한 핫스탬핑 공정시 발생하는 온도 이력 및 상변태 해석)

  • Yoon, S.C.;Kim, D.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.123-132
    • /
    • 2013
  • Hot stamping, which is the hot pressing of special steel sheet using a cold die, can combine ease of shaping with high strength mechanical properties due to the hardening effect of rapid quenching. In this paper, a thermo-mechanical analysis of hot stamping using the finite element method in conjunction with phase transformations was performed in order to investigate the plastic deformation behavior, temperature history, and mechanical properties of the stamped car part. We also conducted a fully coupled thermo-mechanical analysis during the stamping and rapid quenching process to obtain the mechanical properties with the consideration of the effects of plastic deformation and phase transformation on the temperature histories at each point in the part. The finite element analysis could provide key information concerning the temperature histories and the sheet mechanical properties when the phase transformation is properly considered. Such an analysis can also be used to determine the effect of cyclic cooling on the tooling.

Modeling of a Ductile Fracture Criterion for Sheet Metal Considering Anisotropy (판재의 이방성을 고려한 연성파단모델 개발)

  • Park, N.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.91-95
    • /
    • 2016
  • This paper is concerned with modeling of a ductile fracture criterion for sheet metal considering anisotropy to predict the sudden fracture of advanced high strength steel (AHSS) sheets during complicated forming processes. The Lou−Huh ductile fracture criterion is modified using the Hill’s 48 anisotropic plastic potential instead of the von Mises isotropic plastic potential to take account of the influence of anisotropy on the equivalent plastic strain at the onset of fracture. To determine the coefficients of the model proposed, a two dimensional digital image correlation (2D-DIC) method is utilized to measure the strain histories on the surface of three different types of specimens during deformation. For the derivation of an anisotropic ductile fracture model, principal stresses (𝜎1,𝜎2, 𝜎3) are expressed in terms of the stress triaxiality, the Lode parameter, and the equivalent stress (𝜂𝐻, 𝐿,) based on the Hill’s 48 anisotropic plastic potential. The proposed anisotropic ductile fracture criterion was quantitatively evaluated according to various directions of the maximum principal stress. Fracture forming limit diagrams were also constructed to evaluate the forming limit in sheet metal forming of AHSS sheets over a wide range of loading conditions.

Dynamic assessment of a FRP suspension footbridge through field testing and finite element modelling

  • Votsis, Renos A.;Stratford, Tim J.;Chryssanthopoulos, Marios K.;Tantele, Elia A.
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.205-215
    • /
    • 2017
  • The use of advanced fibre composite materials in bridge engineering offers alternative solutions to structural problems compared to traditional construction materials. Advanced composite or fibre reinforced polymer (FRP) materials have high strength to weight ratios, which can be especially beneficial where dead load or material handling considerations govern a design. However, the reduced weight and stiffness of FRP footbridges results in generally poorer dynamic performance, and vibration serviceability is likely to govern their design to avoid the footbridge being "too lively". This study investigates the dynamic behaviour of the 51.3 m span Wilcott FRP suspension footbridge. The assessment is performed through a combination of field testing and finite element analysis, and the measured performance of the bridge is being used to calibrate the model through an updating procedure. The resulting updated model allowed detailed interpretation of the results. It showed that non-structural members such as the parapets can influence the dynamic behaviour of slender, lightweight footbridges, and consequently their contribution must be included during the dynamic assessment of a structure. The test data showed that the FRP footbridge is prone to pedestrian induced vibrations, although the measured response levels were lower than limits specified in relevant standards.

Reliable experimental data as a key factor for design of mechanical structures

  • Brnic, Josip;Krscanski, Sanjin;Brcic, Marino;Geng, Lin;Niu, Jitai;Ding, Biao
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.245-256
    • /
    • 2019
  • The experimentally determined mechanical behavior of the material under the prescribed service conditions is the basis of advanced engineering optimum design. To allow experimental data on the behavior of the material considered, uniaxial stress tests were made. The aforementioned tests have enabled the determination of mechanical properties of material at different temperatures, then, the material's resistance to creep at various temperatures and stress levels, and finally, insight into the uniaxial high cyclic fatigue of the material under different applied stresses for prescribed stress ratio. Based on fatigue tests, using modified staircase method, fatigue limit was determined. All these data contributes the reliability of the use of material in mechanical structures. Data representing mechanical properties are shown in the form of engineering stress-strain diagrams; creep behavior is displayed in the form of creep curves while fatigue of the material is presented in the form of S-N (maximum applied stress versus number of the cycles to failure) curve. Material under consideration was 18CrNi8 (1.5920) steel. Ultimate tensile strength and yield strength at room temperature and at temperature of $600^{\circ}C$: [${\sigma}_{m,20/600}=(613/156)MPa$; ${\sigma}_{0.2,20/600}=(458/141)MPa$], as well as endurance (fatigue) limit at room temperature and stress ratio of R = -1 : (${\sigma}_{f,20,R=-1}=285.1MPa$).