• Title/Summary/Keyword: Advance Rate

Search Result 535, Processing Time 0.026 seconds

Case study of design and construction for cutter change in EPB TBM tunneling (EPB 쉴드 TBM 커터 교체 설계 및 시공 사례 분석)

  • Lee, Jae-won;Kang, Sung-wook;Jung, Jae-hoon;Kang, Han-byul;Shin, Young Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.553-581
    • /
    • 2022
  • Shortly after tunnel boring machine (TBM) was introduced in the tunneling industry, the use of TBM has surprisingly increased worldwide due to its performance together with the benefit of being safely and environmentally friendly. One of the main cost items in the TBM tunneling in rock and soil is changing damaged or worn cutters. It is because that the cutter change is a time-consuming and costly activity that can significantly reduce the TBM utilization and advance rate and has a major effect on the total time and cost of TBM tunneling projects. Therefore, the importance of accurately evaluating the cutter life can never be overemphasized. However, the prediction of cutter wear in soil, rock including mixed face is very complex and not yet fully clarified, subsequently keeping engineers busy around the world. Various prediction models for cutter wear have been developed and introduced, but these models almost usually produce highly variable results due to inherent uncertainties in the models. In this study, a case study of design and construction of disc cutter change is introduced and analyzed, rather than proposing a prediction model of cutter wear. As the disc cutter is strongly affected by the geological condition, TBM machine characteristic and operation, authors believe it is very hard to suggest a generalized prediction model given the uncertainties and limitations therefore it would be more practical to analyze a real case and provide a detailed discussion of the difference between prediction and result for the cutter change. By doing so, up-to-date idea about planning and execution of cutter change in practice can be promoted.

A Case Study on the Construction at Near Verge Section of Secure Objects Using Electronic Detonators (전자뇌관을 이용한 보안물건 초근접구간 시공 사례)

  • Hwang, Nam-Sun;Lee, Dong-Hee;Lim, Il-soo;Kim, Jin-soo
    • Explosives and Blasting
    • /
    • v.37 no.2
    • /
    • pp.22-30
    • /
    • 2019
  • On sites where explosives are used, the effects of noise and vibration produced by the blast wave are subject to a number of operational restrictions. Recently, the number of civil complaints has increased and the standard of environmental regulations on secure goods has been greatly tighten. Therefore, work is generally carried out by machine excavation in case of close proximity of safety thing. Machine excavation methods have the advantage as reducing noise and vibration compared to blasting methods, but depending on the conditions of rock intended to be excavated, they are sometimes less constructive than planned. In general, the closer a rock type is to hard rock, the less constructible it becomes. In this paper, we are going to explain the construction of a construction section with a close proximity to a safety thing using electronic detonators. While the project site was designed with a machine excavation methods due to the close(9.9m) proximity of safety thing(the railroad), construction using electronic detonators was reviewed as an alternative method for improving rate of advance time and construction efficiency when expose to hard rock. Through blasting using electronic detonators, construction and economic efficiency were maximized while minimizing impact on surrounding safety things. Because $HiTRONIC^{TM}$, which is produced by Hanwha, has innovative stability and high explosion reliability, it is able to explode with high-precision accuracy. Electronic detonators are widely used in construction sites of railway or highway, other urban burrowing areas and large limestone mines.

Database Analysis for Estimating Design Parameters of Medium to Large-Diameter TBM (중대단면 TBM 설계 사양 예측을 위한 DB분석)

  • Choi, Soon-Wook;Park, Byungkwan;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.513-527
    • /
    • 2018
  • The Tunnel Boring Machine(TBM) is relatively insufficient to cope with unpredicted changes in ground conditions as compared with Conventional Tunnelling Methods. Therefore, it is very important to predict the TBM performance at the design stage and estimate the advance rate for the calculation of the construction period. In this study, we added data to 211 TBM databases constructed in the previous study and analyzed the correlation between TBM outer diameter, maximum thrust, maximum cutterhead torque, cutterhead driving power and RPM, which are the main design and manufacturing specifications of TBM. As a result of the analysis from results obtained in the previous studies, it was confirmed that TBM outer diameter is very effective and important in estimating maximum thrust, maximum cutterhead torque, and cutterhead driving power of the TBM. As a result of comparing the regression equations derived from other TBM databases outside the country and the regression equation obtained from the present study results, the maximum thrust showed a similar tendency to each other, but the maximum torque estimated from the regression equation of this study was higher than that of other countries in the case of the large scale TBM.

An Experimental Study on Air Evacuation from Lunar Soil Mass and Lunar Dust Behavior for Lunar Surface Environment Simulation (달 지상환경 모사를 위한 지반 진공화 및 달먼지 거동에 대한 실험적 연구)

  • Chung, Taeil;Ahn, Hosang;Yoo, Yongho;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.327-333
    • /
    • 2019
  • For sustainable lunar exploration, the most required resources should be procured on site because it takes tremendous cost to transfer the resources from the Earth to the Moon. The technologies required for use of lunar resources refers to In-Situ Resource Utilization (ISRU). As the ISRU technology cannot be verified in the Earth, a lunar surface environment simulator is necessary to be prepared in advance. The Moon has no atmosphere, and the average temperature of the lunar surface reaches to $107^{\circ}C$ during the daytime and $-153^{\circ}C$ at night. The lunar surface is also covered with very fine soils with sharp particles that are electrostatically charged by solar radiation and solar wind. In this research, generation of vacuum environment with lunar soil mass in a chamber and simulation of electrostatically charged soils are taken into consideration. It was successful to make a vacuum environment of a chamber including lunar soils without soil disturbance by controlling evacuation rate of a vacuum chamber. And an experiment procedure for simulating the charged lunar soil was suggested by theoretical consideration in charging phenomena on lunar dust.

Additional CSP calculation method considering Human Error (휴먼에러를 고려한 추가 CSP 산정 방안)

  • Baek, Sung-Il;Ha, Yun-chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.759-767
    • /
    • 2021
  • Most weapons systems that are Force Integration are expensive equipment that reflects the latest technology, and the operation and maintenance cost is increasing continuously. Factors that efficiently operate and maintain these weapon systems include maintenance plans, economic costs, and repair part requirements. Among them, predicting the repair parts requirements during the life cycle in advance is an important way to increase operation and maintenance cost efficiency and operating availability. The start of requirement analysis for repair parts is a calculation of the CSP (CSP: Concurrent Spare parts, CSP hereafter) that is distributed when the weapon system is deployed. The CSP is an essential component of achieving the operating availability during this period because the weapon system aims to successfully perform a given operation mission without resupply for an initial set period. In the present study, the CSP calculation method was analyzed, reflecting the failure rate and operating time of items, but the analyzed CSP was aimed at preparing for technical failure, but in the initial operating environment, it is limited in coping with unexpected failures caused by human error. The failure is not included in the scope of free maintenance and is a serious factor in making the weapon system inoperable during the initial operation period. To prevent the inoperable status of a weapon system, CSP that considers human error is required in the initial operating environment, and the calculation criteria and measures are proposed.

A study on the development of virtual reality for disaster prevention in households living with companion animals (반려동물 동거가구의 재난예방을 위한 가상현실 개발 연구)

  • Han, Dong-Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.583-589
    • /
    • 2021
  • This study is a study on the development of virtual reality to prepare for the increase in disasters of households living with companion animals due to the increase of companion animals. The increase in single-person households and DINKs(Double Income, No Kid) along with the low birth rate and aging population is raising the risk of disasters caused by companion animals in particular. Among these disasters, there is an increase in the occurrence of fires primarily due to the raising of companion animals. Electric stove fires caused by pets are the most common fires. In particular, the frequency of electric stove fires caused by cats is the highest. Careful precautions by the owner are necessary to reduce fires caused by pets. Parenting of companion animals causes pet loss syndrome due to emotional exchange. There are injuries to pets in escalators and injuries to owners in elevators due to disasters caused by the owner's negligence. In order to reduce injuries on escalators and elevators, basic etiquette for using escalators and elevators with pets is required as basic etiquette. It is necessary to utilize virtual reality to reduce disasters caused by such companion animals. Virtual reality can be experienced without a physical space in advance training to overcome disasters, so real disaster cases can be experienced immersively. Therefore, learning how to reduce fires caused by companion animals, disasters caused by owner's negligence, and petloss syndrome through virtual reality will greatly contribute to disaster prevention and reduction of social costs.

Long Range Forecast of Garlic Productivity over S. Korea Based on Genetic Algorithm and Global Climate Reanalysis Data (전지구 기후 재분석자료 및 인공지능을 활용한 남한의 마늘 생산량 장기예측)

  • Jo, Sera;Lee, Joonlee;Shim, Kyo Moon;Kim, Yong Seok;Hur, Jina;Kang, Mingu;Choi, Won Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.391-404
    • /
    • 2021
  • This study developed a long-term prediction model for the potential yield of garlic based on a genetic algorithm (GA) by utilizing global climate reanalysis data. The GA is used for digging the inherent signals from global climate reanalysis data which are both directly and indirectly connected with the garlic yield potential. Our results indicate that both deterministic and probabilistic forecasts reasonably capture the inter-annual variability of crop yields with temporal correlation coefficients significant at 99% confidence level and superior categorical forecast skill with a hit rate of 93.3% for 2 × 2 and 73.3% for 3 × 3 contingency tables. Furthermore, the GA method, which considers linear and non-linear relationships between predictors and predictands, shows superiority of forecast skill in terms of both stability and skill scores compared with linear method. Since our result can predict the potential yield before the start of farming, it is expected to help establish a long-term plan to stabilize the demand and price of agricultural products and prepare countermeasures for possible problems in advance.

A Study on the Prediction of Rock Classification Using Shield TBM Data and Machine Learning Classification Algorithms (쉴드 TBM 데이터와 머신러닝 분류 알고리즘을 이용한 암반 분류 예측에 관한 연구)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.494-507
    • /
    • 2021
  • With the increasing use of TBM, research has recently been conducted in Korea to analyze TBM data with machine learning techniques to predict the ground in front of TBM, predict the exchange cycle of disk cutters, and predict the advance rate of TBM. In this study, classification prediction of rock characteristics of slurry shield TBM sites was made by combining traditional rock classification techniques and machine learning techniques widely used in various fields with machine data during TBM excavation. The items of rock characteristic classification criteria were set as RQD, uniaxial compression strength, and elastic wave speed, and the rock conditions for each item were classified into three classes: class 0 (good), 1 (normal), and 2 (poor), and machine learning was performed on six class algorithms. As a result, the ensemble model showed good performance, and the LigthtGBM model, which showed excellent results in learning speed as well as learning performance, was found to be optimal in the target site ground. Using the classification model for the three rock characteristics set in this study, it is believed that it will be possible to provide rock conditions for sections where ground information is not provided, which will help during excavation work.

A Study on the Prediction of Disc Cutter Wear Using TBM Data and Machine Learning Algorithm (TBM 데이터와 머신러닝 기법을 이용한 디스크 커터마모 예측에 관한 연구)

  • Tae-Ho, Kang;Soon-Wook, Choi;Chulho, Lee;Soo-Ho, Chang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.502-517
    • /
    • 2022
  • As the use of TBM increases, research has recently increased to to analyze TBM data with machine learning techniques to predict the exchange cycle of disc cutters, and predict the advance rate of TBM. In this study, a regression prediction of disc cutte wear of slurry shield TBM site was made by combining machine learning based on the machine data and the geotechnical data obtained during the excavation. The data were divided into 7:3 for training and testing the prediction of disc cutter wear, and the hyper-parameters are optimized by cross-validated grid-search over a parameter grid. As a result, gradient boosting based on the ensemble model showed good performance with a determination coefficient of 0.852 and a root-mean-square-error of 3.111 and especially excellent results in fit times along with learning performance. Based on the results, it is judged that the suitability of the prediction model using data including mechanical data and geotechnical information is high. In addition, research is needed to increase the diversity of ground conditions and the amount of disc cutter data.

EC-RPL to Enhance Node Connectivity in Low-Power and Lossy Networks (저전력 손실 네트워크에서 노드 연결성 향상을 위한 EC-RPL)

  • Jeadam, Jung;Seokwon, Hong;Youngsoo, Kim;Seong-eun, Yoo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.41-49
    • /
    • 2022
  • The Internet Engineering Task Force (IETF) has standardized RPL (IPv6 Routing Protocol for Low-power Lossy Network) as a routing protocol for Low Power and Lossy Networks (LLNs), a low power loss network environment. RPL creates a route through an Objective Function (OF) suitable for the service required by LLNs and builds a Destination Oriented Directed Acyclic Graph (DODAG). Existing studies check the residual energy of each node and select a parent with the highest residual energy to build a DODAG, but the energy exhaustion of the parent can not avoid the network disconnection of the children nodes. Therefore, this paper proposes EC-RPL (Enhanced Connectivity-RPL), in which ta node leaves DODAG in advance when the remaining energy of the node falls below the specified energy threshold. The proposed protocol is implemented in Contiki, an open-source IoT operating system, and its performance is evaluated in Cooja simulator, and the number of control messages is compared using Foren6. Experimental results show that EC-RPL has 6.9% lower latency and 5.8% fewer control messages than the existing RPL, and the packet delivery rate is 1.7% higher.