• Title/Summary/Keyword: Adult brain neuron

Search Result 11, Processing Time 0.057 seconds

Neurogenesis in the Adult Brain (성체 뇌 조직의 신경발생)

  • Kim, Sik-Hyun;Kim, Sang-Su
    • PNF and Movement
    • /
    • v.6 no.3
    • /
    • pp.37-51
    • /
    • 2008
  • Purpose : This paper focuses on the emerging concept that adult central nervous system neurogenesis can be regulated by various physical activity, enriched environment, and pathological conditions. Neurogenesis-the production of new neuron-is an ongoing process that persists in the adult brain of mammalian, including humans. Result : The adult brain was thought be limited in its regenerative function. However, this concepts changed, recent evidence of neurogenesis in certain adult brain areas such as SVZ(subventricular zone) and SGZ(subgranular zone) in hippocampus, raised possibility for improved treatment for patient with stroke. Neural plasticity has an adaptive purpose, because an ability of the brain to change in response to peripheral stimulation, physical activity, experience, and injury. Conclusions : The major function of the neurogenesis in adult brain seems to be replacing the neuron that die regularly in discrete adult brain regions. These cells are capable of functionally integrating into neighboring neural cells, and reconnecting to the correct neural networks. This review suggest that various intervention, including physical activity, voluntary movement training, skilled forelimb reaching training, and enriched environment, induced neural cell production in certain adult brain, and associated with functional recovery after stroke.

  • PDF

Gintonin influences the morphology and motility of adult brain neurons via LPA receptors

  • Kim, Do-Geun;Kim, Hyeon-Joong;Choi, Sun-Hye;Nam, Sung Min;Kim, Hyoung-Chun;Rhim, Hyewhon;Cho, Ik-Hyun;Rhee, Man Hee;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.401-407
    • /
    • 2021
  • Background: Gintonin is an exogenous ginseng-derived G-protein-coupled lysophosphatidic acid (LPA) receptor ligand. LPA induces in vitro morphological changes and migration through neuronal LPA1 receptor. Recently, we reported that systemic administration of gintonin increases blood-brain barrier (BBB) permeability via the paracellular pathway and its binding to brain neurons. However, little is known about the influences of gintonin on in vivo neuron morphology and migration in the brain. Materials and methods: We examined the effects of gintonin on in vitro migration and morphology using primary hippocampal neural precursor cells (hNPC) and in vivo effects of gintonin on adult brain neurons using real time microscopic analysis and immunohistochemical analysis to observe the morphological and locational changes induced by gintonin treatment. Results: We found that treating hNPCs with gintonin induced morphological changes with a cell rounding following cell aggregation and return to individual neurons with time relapses. However, the in vitro effects of gintonin on hNPCs were blocked by the LPA1/3 receptor antagonist, Ki16425, and Rho kinase inhibitor, Y27632. We also examined the in vivo effects of gintonin on the morphological changes and migration of neurons in adult mouse brains using anti-NeuN and -neurofilament H antibodies. We found that acute intravenous administration of gintonin induced morphological and migrational changes in brain neurons. Gintonin induced some migrations of neurons with shortened neurofilament H in the cortex. The in vivo effects of gintonin were also blocked by Ki16425. Conclusion: The present report raises the possibility that gintonin could enter the brain and exert its influences on the migration and morphology of adult mouse brain neurons and possibly explains the therapeutic effects of neurological diseases behind the gintonin administration.

Estimation of Number of Synapses on a Neuron in the Brain Using Physical Bisector Method (Physical disector를 이용한 신경세포 및 신경연접 수의 측정)

  • Lee, Kea-Joo;Rhyu, Im-Joo
    • Applied Microscopy
    • /
    • v.36 no.2
    • /
    • pp.83-91
    • /
    • 2006
  • The number and structure of synapses are dynamically changed in response to diverse physiological and pathological conditions. Since strength of synaptic transmission is closely related to the synaptic density on a neuron, both synaptogenesis and synapse loss may play important roles in controlling neuronal activity. Thus it is essential to estimate the number of synapses using an accurate quantitative method for better understanding of the numerical alteration of synapses under terrain experimental conditions. We applied physical disector principle to estimating the number of synapses per neuron in the dentate gyrus of adult mice. First, we measured the numerical density of granule cells using the physical disector principle. Second, the density of medial perforant path to granule cell synapses was estimated using the bidirectional physical disector. Then, the volume ratio of molecular layer to granule cell layer was measured. With these numerial values, we successfully calculated the number of synapses per neuron. Individual granule cells have approximately 6500 synapses in the dentate gyrus of adult mice $(6,545{\pm}330)$, which are comparable to those of other researchers. Our results showed that the estimation of synapse numbers per neuron using the physical disector principle would provide accurate and precise information on the numerical alteration of synapses in diverse physiological and pathological conditions. Following analyses of synapse numbers using this method will contribute to the better understanding of structural synaptic plasticity in a variety of experimental animal models.

Induction of Neuron-derived Orphan Receptor-1 in the Dentate Gyrus of the Hippocampal Formation Following Transient Global Ischemia in the Rat

  • Kim, Younghwa;Hong, Soontaek;Noh, Mi Ra;Kim, Soo Young;Huh, Pil Woo;Park, Sun-Hwa;Sun, Woong;Kim, Hyun
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.8-12
    • /
    • 2006
  • Neuron-derived orphan receptor (NOR-1) is a member of the thyroid/steroid receptor superfamily that was originally identified in forebrain neuronal cells undergoing apoptosis. In addition to apoptotic stimuli, activation of several signal transduction pathways including direct neuronal depolarization regulates the expression of NOR-1. In this study we tested whether the expression of NOR-1 is changed following transient ischemic injury in the adult rat brain. NOR-1 mRNA increased rapidly in the dentate gyrus of the hippocampal formation and piriform cortex 3 h after transient global ischemia and returned to basal level at 6 h. On the other hand, oxygen-glucose deprivation of cultured cerebral cortical neurons did not alter the expression of NOR-1. These results suggest that expression of NOR-1 is differentially regulated in different brain regions in response to globally applied brain ischemia, but that hypoxia is not sufficient to induce its expression.

Forebrain glutamatergic neuron-specific Ctcf deletion induces reactive microgliosis and astrogliosis with neuronal loss in adult mouse hippocampus

  • Kwak, Ji-Hye;Lee, Kyungmin
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.317-322
    • /
    • 2021
  • CCCTC-binding factor (CTCF), a zinc finger protein, is a transcription factor and regulator of chromatin structure. Forebrain excitatory neuron-specific CTCF deficiency contributes to inflammation via enhanced transcription of inflammation-related genes in the cortex and hippocampus. However, little is known about the long-term effect of CTCF deficiency on postnatal neurons, astrocytes, or microglia in the hippocampus of adult mice. To address this, we knocked out the Ctcf gene in forebrain glutamatergic neurons (Ctcf cKO) by crossing Ctcf-floxed mice with Camk2a-Cre mice and examined the hippocampi of 7.5-10-month-old male mice using immunofluorescence microscopy. We found obvious neuronal cell death and reactive gliosis in the hippocampal cornu ammonis (CA)1 in 7.5-10-month-old cKO mice. Prominent rod-shaped microglia that participate in immune surveillance were observed in the stratum pyramidale and radiatum layer, indicating a potential increase in inflammatory mediators released by hippocampal neurons. Although neuronal loss was not observed in CA3, and dentate gyrus (DG) CTCF depletion induced a significant increase in the number of microglia in the stratum oriens of CA3 and reactive microgliosis and astrogliosis in the molecular layer and hilus of the DG in 7.5-10-month-old cKO mice. These results suggest that long-term Ctcf deletion from forebrain excitatory neurons may contribute to reactive gliosis induced by neuronal damage and consequent neuronal loss in the hippocampal CA1, DG, and CA3 in sequence over 7 months of age.

Differentiation of Human Adult Adipose Derived Stem Cell in vitro and Immunohistochemical Study of Adipose Derived Stem Cell after Intracerebral Transplantation in Rats

  • Ko, Kwang-Seok;Lee, Il-Woo;Joo, Won-Il;Lee, Kyung-Jun;Park, Hae-Kwan;Rha, Hyung-Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.2
    • /
    • pp.118-124
    • /
    • 2007
  • Objective : Adipose tissue is derived from the embryonic mesoderm and contains a heterogenous stromal cell population. Authors have tried to verify the characteristics of stem cell of adipose derived stromal cells (ADSCs) and to investigate immunohistochemical findings after transplantation of ADSC into rat brain to evaluate survival, migration and differentiation of transplanted stromal cells. Methods : First ADSCs were isolated from human adipose tissue and induced adipose, osseous and neuronal differentiation under appropriate culture condition in vitro and examined phenotypes profile of human ADSCs in undifferentiated states using flow cytometry and immunohistochemical study. Human ADSCs were transplanted into the healthy rat brain to investigate survival, migration and differentiation after 4 weeks. Results : From human adipose tissue, adipose stem cells were harvested and subcultured for several times. The cultured ADSCs were differentiated into adipocytes, osteoctye and neuron-like cell under conditioned media. Flow cytometric analysis of undifferentiated ADSCs revealed that ADSCs were positive for CD29, CD44 and negative for CD34, CD45, CD117 and HLA-DR. Transplanted human ADSCs were found mainly in cortex adjacent to injection site and migrated from injection site at a distance of at least 1 mm along the cortex and corpus callosum. A few transplanted cells have differentiated into neuron and astrocyte. Conclusion : ADSCs were differentiated into multilineage cell lines through transdifferentiation. ADSCs were survived and migrated in xenograft without immunosuppression. Based on this data, ADSCs may be potential source of stem cells for many human disease including neurologic disorder.

Intraoperative Neurophysiological Monitoring : A Review of Techniques Used for Brain Tumor Surgery in Children

  • Kim, Keewon;Cho, Charles;Bang, Moon-suk;Shin, Hyung-ik;Phi, Ji-Hoon;Kim, Seung-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.363-375
    • /
    • 2018
  • Intraoperative monitoring (IOM) utilizes electrophysiological techniques as a surrogate test and evaluation of nervous function while a patient is under general anesthesia. They are increasingly used for procedures, both surgical and endovascular, to avoid injury during an operation, examine neurological tissue to guide the surgery, or to test electrophysiological function to allow for more complete resection or corrections. The application of IOM during pediatric brain tumor resections encompasses a unique set of technical issues. First, obtaining stable and reliable responses in children of different ages requires detailed understanding of normal age-adjusted brain-spine development. Neurophysiology, anatomy, and anthropometry of children are different from those of adults. Second, monitoring of the brain may include risk to eloquent functions and cranial nerve functions that are difficult with the usual neurophysiological techniques. Third, interpretation of signal change requires unique sets of normative values specific for children of that age. Fourth, tumor resection involves multiple considerations including defining tumor type, size, location, pathophysiology that might require maximal removal of lesion or minimal intervention. IOM techniques can be divided into monitoring and mapping. Mapping involves identification of specific neural structures to avoid or minimize injury. Monitoring is continuous acquisition of neural signals to determine the integrity of the full longitudinal path of the neural system of interest. Motor evoked potentials and somatosensory evoked potentials are representative methodologies for monitoring. Free-running electromyography is also used to monitor irritation or damage to the motor nerves in the lower motor neuron level : cranial nerves, roots, and peripheral nerves. For the surgery of infratentorial tumors, in addition to free-running electromyography of the bulbar muscles, brainstem auditory evoked potentials or corticobulbar motor evoked potentials could be combined to prevent injury of the cranial nerves or nucleus. IOM for cerebral tumors can adopt direct cortical stimulation or direct subcortical stimulation to map the corticospinal pathways in the vicinity of lesion. IOM is a diagnostic as well as interventional tool for neurosurgery. To prove clinical evidence of it is not simple. Randomized controlled prospective studies may not be possible due to ethical reasons. However, prospective longitudinal studies confirming prognostic value of IOM are available. Furthermore, oncological outcome has also been shown to be superior in some brain tumors, with IOM. New methodologies of IOM are being developed and clinically applied. This review establishes a composite view of techniques used today, noting differences between adult and pediatric monitoring.

Effects of Posttraumatic MgSO4 Injection and Hypothermia an Animal Model of Traumatic Brain Injury(TBI) (실험적 외상성 뇌손상모델에서 외상 후 저체온과 MgSO4의 효과)

  • Han, Seong Rok;Hyun, Dong Keun;Park, Chong Oon;Ha, Young Soo;Kim, Joon Mee
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.10
    • /
    • pp.1296-1302
    • /
    • 2000
  • Objective : Traumatic brain injury including diffuse axonal injury has been shown to result in a decrease in brainfree magnesium concentration, an endogenous inhibitor of calcium entry into neuron, that is associated with the development of neurological motor deficits. The goal of this study is to establish the therapeutic window during which the therapy with $MgSO_4$ and/or hypothermia improve damaged neurons by TUNEL stain. Method : Moderate brain injury was induced in 64 adult Sprague-Dawley rats, weighing 350 to 450gm each, by using a simple weight-drop device(Marmarou model). The animals were randomly assigned to four groups(sixteen rats each, a control group, a group treated with $MgSO_4$, a group treated with hypothermia, and a group treated with $MgSO_4$ and hypothermia) and the rats in each group were sacrificed and studied after 12 hrs, 24 hrs, 1 wk, and 2 wks after insult. In hypothermic group, these rats were subjected to hypothermia after injury, with their rectal temperatures maintained at $32^{\circ}C$ for 1 hour. After 1-hour period of hypothermia, rewarming to normothermic level was accomplished over 30-minute period. In the groups treated $MgSO_4$, hypothermia and $MgSO_4$ were subsequently treated with $MgSO_4$($750{\mu}moles/kg$) infused intra-muscularly at 30 minutes after trauma. Result : In all treated groups, a significant reduction in TUNEL positive cells was found in comparison with the control group each time(p<0.001). Between treatment groups, No differnce was seen 12hrs, 24hrs, and 1wk. However, hypothermic group treated with or without $MgSO_4$ showed more significant reduction in apoptotic cells than group treated with $MgSO_4$ 2 weeks after trauma(p<0.05). However, hypothermic group treated with $MgSO_4$ showed no significant reduction in apoptotic cells compared with hypothermic group(p>0.05). Conclusion : These findings suggest that both hypothermia and $MgSO_4$ significantly improve pathological changes. Otherwise simultaneously $MgSO_4$ and hypothermia treatment groups is failed to provide additional neuroprotection. These results may be relevant to the design of future clinical trials of therapeutic hypothermia and $MgSO_4$ for traumatic brain injury.

  • PDF

Effects of Systemic and Focal Hypoxia on the Activities of Rostral Ventrolateral Medullary Neurons in Cats

  • Yan, Hai-Dun;Kim, Charn;Kim, Ji-Mok;Lim, Won-Il;Kim, Sang-Jeong;Kim, Jun
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.105-116
    • /
    • 1996
  • Rendering the brain ischemic would evoke the cerebral ischemic reflex which is characterized by an arterial pressor response, apnea and bradycardia. Since the rostral ventrolateral medulla (RVLM) is known to play a key role in the maintenance of normal cardiopulmonary activity, during the cerebral ischemic reflex some cardiac related cells should be excited and respiration related cells inhibited. In this context, the responses of RVLM neurons to systemie and focal hypoxia were analyzed in the present study. Twenty-five adult cats of either sex were anesthetized with ${\alpha}-chloralose$ and the single neuronal activities were identified from RVLM area. For the induction of focal hypoxia in the recording site, sodium cyanide was applied iontophoretically and for systemic hypoxia the animal was ventilated with nitrogen gas for a twenty-second period. Cellular activities were analyzed in terms of their discharge pattern and responses to the hypoxia by using post-stimulus time and single-pass time histograms. Of eighteen cardiac related cells recorded from the RVLM area, twelve cells were excited by iontophoresed sodium cyanide and of twenty-five respiration related cells, fourteen cells were excited by iontophoresed sodium cyanide. Remaining cells were either inhibited or unaffected. Eight of fifteen cells tested with iontophoresed sodium lactate were excited and remaining seven cells were inhibited. Systemic hypoxia induced by nitrogen gas inhalation elevated the arterial blood pressure, but excited, inhibited or unaffected the single neuronal activities. Some cells showed initial excitation followed by inhibition during the systemic hypoxia. Bilateral vagotomy resulted in a decrease of arterial pressor response to the systemic hypoxia, and a slight decrease in the rhythmicity related to cardiac and/or respiratory rhythms. The single neuronal responses to either systemic or focal hypoxia were not affected qualitatively by vagotomy. From the above results, it was concluded that the majority of the cardiac- and respiration- related neurons in the rostral ventrolateral medulla be excited by hypoxia, not through the mediation of peripheral chemoreceptors, and along with the remaining inhibited cells, all these cells be involved in the mediation of cerebral ischemic reflex.

  • PDF

Immunohistochemical studies on the relationship between pineal body and superior cervical ganglia of the Korean native goat (한국재래산양 송과체와 앞쪽목신경절의 관계규명을 위한 면역조직화학적 연구)

  • Lee, Heungshik S.;Lee, In-Se;Song, Seung-hoon;Yoon, Sung-tae;Hwang, In-koo;Lee, Choong-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.197-211
    • /
    • 2000
  • The pineal body have been known to be affected by superior cervical ganglia, and most of its nerve fibers containing peptidergic neurotransmitters have been considered to be originated from this ganglia. To confirm this relationships, some peptidergic neurotransmitters were identified in both of pineal body and superior cervical ganglia of the Korean native goat, which were divided into two group; breeding season and non-breeding season. The localizations of two catecholamine-synthesizing enzymes; tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH), were investigated by immunohistochemistry in the superior cervical ganglia and the pineal body of adult Korean native goats. Substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) and galanin (GAL) were also identified in these organs by immunohistochemical and double immunofluorescent methods. In superior cervical ganglia, immunoreactivities for TH and DBH were confirmed in the same ganglion cells. The immunoreactivites for SP, VIP(only in male), NPY and GAL were identified in both of ganglion cell bodies and nerve fibers in the ganglia. CGRP immunoreactivity, however, was observed only in nerve fibers. Most NPY- and VIP-immunoreactive(IR) ganglion cells also contained TH. SP and TH were colocalized in the cell bodies, but not in the nerve fibers. TH immunoreactivity was shown in almost all of ganglion cells in the superior cervical ganglia. The immunoreactivity for NPY had some seasonal variation and was stronger in breeding season than in non-breeding season. In pineal body, lots of TH-IR fibers were observed throughout the parenchyma including the pineal stalk and most of them also contained DBH. SP- and NPY-IR fibers were also immunostained with TH or DBH. But a few SP- and NPY-IR fibers were not colocalized with TH or DBH. Exceptionally, a bipolar neuron-like cell was observed to be immunostained with NPY in the pineal body. A few CGRP and GAL-IR fibers were observed, while VIP-IR fibers were not present. It is concluded that most TH- and DBH-IR fibers as well as the peptidergic immunoreactive fibers of the pineal body might be originated from the superior cervical ganglia. Some peptidergic immunoreactive fibers, however, might be come from other regions of brain. We also suggest that NPY in pineal body plays a important role for pineal function. The seasonal variation of NPY immunoreactivity indicates that the synthesis and use of NPY may be different between in breeding and non-breeding seasons.

  • PDF