• Title/Summary/Keyword: Adsorption rate

Search Result 1,044, Processing Time 0.115 seconds

Characteristics of Low Temperature Desorption of Volatile Organic Compounds from Waste Activated Carbon in Cylindrical Cartridge (원통형 활성탄 카트리지 내 폐활성탄의 휘발성 유기화합물 저온 탈착 특성)

  • Kang, Sin-Wook;Lee, Seongwoo;Son, Doojeong;Han, Moonjo;Lee, Tae Ho;Hong, Sungoh
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.79-84
    • /
    • 2021
  • In this study, the waste activated carbon used in the painting process was filled into a cylindrical cartridge and the characteristics of desorption by low temperature gas were investigated. Adsorption and desorption experiments of toluene with activated carbon were conducted to determine the flow rate of desorption. In an experiment where desorption was performed while changing conditions at flow rates of 1, 2 and 4 ㎥ min-1, it was determined that 2 ㎥ min-1 was appropriate due to the high THC concentration and desorption time. In the early stage of the desorption of waste activated carbon, 2-butanone and MIBK (methyl isobutyl ketone) with a low boiling point were generated at a high rate in the gas component, and after that, the concentration of THC decreased and the BTX was desorbed at a high rate. The total calorific value of the gas component generated during the desorption of waste activated carbon was 316 kcal kg-1. From repeating the regeneration of waste activated carbon with toluene five times, it was observed that the iodine value and the specific surface area were relatively lower than that of new activated carbon. In the desorption experiment where two cylindrical cartridges were connected in series, the maximum THC concentration was about 470 ppm.

Development of Mixed-bed Ion Exchange Resin Capsule for Water Quality Monitoring (수질 중 질소와 인 모니터링을 위한 혼합이온교환수지 캡슐의 개발)

  • Park, Chang-Jin;Kim, Dong-Kuk;Ok, Yong-Sik;Ryu, Kyung-Ryul;Lee, Ju-Young;Zhang, Yong-Seon;Yang, Jae-E
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.344-350
    • /
    • 2004
  • This study was conducted to develop and assess the applicability of mixed-bed ion exchange resin capsules for water quality monitoring in small agricultural watershed. Recoveries of resin capsules for inorganic N and P ranged from 96 to 102%. The net activation energies and pseudo-thermodynamic parameters, such as ${\Delta}G^{o\ddag},\;{\Delta}H^{o\ddag},\;and\;{\Delta}S^{o\ddag}$ for ion adsorption by resin capsules, exhibited relatively low values, indicating the process might be governed by chemical reactions such as diffusion. However, those values increased with temperature coinciding with the theory. The reaction reached pseudo-equilibrium within 24 hours for $NH_4-N\;and\;NO_3-N$, and only 8 hours for $PO_4-P$, respectively. The selectivity of resin capsules were in the order of $NO_3\;^-\;>\;NH_4\;^+\;>\;PO_4\;^{3-}$, coinciding with that of encapsulated Amberlite IRN-150 resin. At the initial state of equilibrium, the resin adsorption quantity was linearly proportional to the mass of ions in the streams, but the rate of movement leveled off, following Langmuir-type sorption isotherm. The overall results demonstrated that the resin capsule system was suitable for water quality monitoring in small agricultural watershed, judging from the reaction mechanism(s) of the resin capsule and the significance of model in field calibration.

Effect of Nonsolvent Additive in Casting Solutions on Polysulfone Membrane Preparation (Polysilfone 막의 제조에 있어 제막용액에 첨가된 비용매의 영향)

  • 한명진
    • Membrane Journal
    • /
    • v.6 no.3
    • /
    • pp.157-165
    • /
    • 1996
  • Polysulfone(PS) membranes were prepared from homogeneous PS solutions by the phase inversion technique. When propionic acid(PA) was added into a casting solution of n-methylpyrrolidone(NMP) and PS, precipitation rate of the solution film was accelerated. This kind of acceleration was consistent, even though a precipitating nonsolvent was changed from water to isopropanol. These phenomena were caused by decrease of nonsolvent tolerance in the casting solution due to addition of PA. PS powder was prepared by precipitation of a 3wt% solution in dimethylformamide(DMF) using ethanol as nonsolvent. Gas adsorption analysis of the powder showed that the capillary condensation sites were found in the powder structure. Membranes prepared from PS solution(15wt%) in NMP had the following characteristics of gas adsorption and water permeation. In gas adsorption analysis, the membrane precipitated using isopropanol showed low uptake of nitrogen gas and the capillary condensation sites were not found. On the contrary, a significant amount of the capillary condensation sites was found in the membrane coagulated by water, which was related to increase of nitrogen uptake. tn the membrane prepared froin the solution including PA, an increase of the Henry's law sites and the Langmuir sites was not found clearly. However, the capillary condensation sites were significantly increased, and the water transport also increased.

  • PDF

New Methods for Separation of Crude Ginseng Saponins (인삼 조사포닌의 새로운 분리 방법)

  • Shin, Ji-Young;Choi, Eon-Ho;Wee, Jae-Joon
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.166-172
    • /
    • 2001
  • In order to increase ginsenoside content, to reduce chemical change, to shorten extracting procedure, new methods of extraction and fractionation of crude ginseng saponin were established and compared for their chemical composition. Those are hot MeOH extraction/n-BuOH fractionation (BuOH method) and hot MeOH extraction/Diaion HP-20 adsorption/MeOH elution (HP-20 method), which are already known methods, and additional three new methods: hot MeOH extraction/cation AG 50W $adsorption/H_2O$ elution/n-BuOH extraction (AG 50W method), cool MeOH extraction/Diaion HP-20 adsorption/MeOH elution (cool extraction method) and direct extraction with EtOAc/n-BuOH (direct extraction method). AG 50W method provided a crude saponin showing the highest content of ginsenosides of 61.5% and the lowest contents of protein and free amino acids of 0.93% and 0.19%, respectively. The protein content was the highest as 14.18% in the crude saponin by HP-20 method, while free sugar content was the highest as 13.5% by BuOH method, indicating that these are factors that lower the rate of ginsenoside in crude saponins by those methods. On the other hand, it was revealed that AG 50W method produced large amount of prosapogenins during the pass through the cation exchange resin (AG 50W) column being strongly acidic. Crude saponin from direct extraction method showed relatively higher composition of ginsenoside $Rg_1$ and Re. The results suggest that contents and composition of ginsenosides and other chemical components in crude ginseng saponin greatly depend on the condition of the extraction and fractionation.

  • PDF

Arsenic Removal Mechanism of the Residual Slag Generated after the Mineral Carbonation Process in Aqueous System (광물탄산화 공정 이후 발생하는 잔사슬래그의 수계 내 비소 제거 기작)

  • Kim, Kyeongtae;Latief, Ilham Abdul;Kim, Danu;Kim, Seonhee;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.377-388
    • /
    • 2022
  • Laboratory-scale experiments were performed to identify the As removal mechanism of the residual slag generated after the mineral carbonation process. The residual slags were manufactured from the steelmaking slag (blast oxygen furnace slag: BOF) through direct and indirect carbonation process. RDBOF (residual BOF after the direct carbonation) and RIBOF (residual BOF after the indirect carbonation) showed different physicochemical-structural characteristics compared with raw BOF such as chemical-mineralogical properties, the pH level of leachate and forming micropores on the surface of the slag. In batch experiment, 0.1 g of residual slag was added to 10 mL of As-solution (initial concentration: 203.6 mg/L) titrated at various pH levels. The RDBOF showed 99.3% of As removal efficiency at initial pH 1, while it sharply decreased with the increase of initial pH. As the initial pH of solution decreased, the dissolution of carbonate minerals covering the surface was accelerated, increasing the exposed area of Fe-oxide and promoting the adsorption of As-oxyanions on the RDBOF surface. Whereas, the As removal efficiency of RIBOF increased with the increase of initial pH levels, and it reached up to 70% at initial pH 10. Considering the PZC (point of zero charge) of the RIBOF (pH 4.5), it was hardly expected that the electrical adsorption of As-oxyanion on surface of the RIBOF at initial pH of 4-10. Nevertheless it was observed that As-oxyanion was linked to the Fe-oxide on the RIBOF surface by the cation bridge effect of divalent cations such as Ca2+, Mn2+, and Fe2+. The surface of RIBOF became stronger negatively charged, the cation bridge effect was more strictly enforced, and more As can be fixed on the RIBOF surface. However, the Ca-products start to precipitate on the surface at pH 10-11 or higher and they even prevent the surface adsorption of As-oxyanion by Fe-oxide. The TCLP test was performed to evaluate the stability of As fixed on the surface of the residual slag after the batch experiment. Results supported that RDBOF and RIBOF firmly fixed As over the wide pH levels, by considering their As desorption rate of less than 2%. From the results of this study, it was proved that both residual slags can be used as an eco-friendly and low-cost As remover with high As removal efficiency and high stability and they also overcome the pH increase in solution, which is the disadvantage of existing steelmaking slag as an As remover.

pH-Dependent Dye Adsorption and Release Behaviors of Poly(ethylene-alt-maleic anhydride)/poly(4-vinyl pyridine) Multiplayer Films (pH 의존 특성을 갖는 Poly(ethylene-alt-maleic anhydride)/Poly(4-vinyl pyridine) 다층막의 염료 흡착 및 방출 거동 연구)

  • Hong, Sook-Young;Lee, Joon-Youl
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.593-598
    • /
    • 2005
  • This work studied the loading capabilities and release behaviors of poly(ethylene-alt-maleic anhydride) (PEMAh)/poly(4-vinyl pyridine) (P4VP) multilayer films formed by the layer-by-layer(LbL) sequential self-assembly method, using Rodamine 6G(R6G) as an indicator. Thickness of the multilayer, and loading and subsequent release behavior of R6G from the multilayer were studied using UV-visible spectroscopy. The amount of R6G loaded in multilayer film increased linearly with increasing film thickness. pH-Sensitive permeability was observed, where lower pH environments increased both release rate and release amount. By additional assembling of PEMAh/poly(ethyleneimine) (PEI) capping layers on top of (PEMAh/P4VP)n multilayers, the release of R6G was better controlled.

Desalination of Brackish Water by Capacitive Deionization System Combined with Ion-exchange Membrane (이온교환막을 결합한 축전식 탈염 시스템을 이용한 염수의 탈염)

  • Kim, Yu-Jin;Choi, Jae-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.87-92
    • /
    • 2010
  • Desalination experiments were carried out with two types of cell configuration; a CDI cell constructed with carbon electrodes only and a membrane capacitive deionization (MCDI) cell having a cation-exchange membrane on the cathode surface. The salt removal rate and desalination efficiencies increased linearly with increasing the cell potential. Although the same carbon electrodes were used in the desalination experiments, the MCDI cell showed higher salt removal efficiency than that of the CDI cell. The amount of salt removal for the MCDI cell was enhanced by 33.1~135% compared to the CDI cell, depending on the applied cell potential in the range of 0.8~1.2 V. In addition, the current efficiency for the MCDI cell was about 80%, whereas the efficiency was under 40% for the CDI cell. The higher salt removal efficiency in the MCDI cell was attributed to the fact that ions were selectively transported between the electric double layer and the bulk solution in the MCDI cell configuration.

Preparations and characteristics of the ceramic balls for heavy metals absorption and antibacterial activities in the drinking water (음용수중의 중금속흡착과 항균성용 세라믹 볼의 제조 및 특성평가)

  • Park, Chun-Won;Park, Ra-Young;Park, Sun-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.263-268
    • /
    • 2005
  • The ceramic balls impregnated with $20{\sim}40nm$ sized Ag colloid were examined for heavy metals absorption and antibacterial activities in the drinking water. The preparation conditions of ceramic ball that the porosity was excellent were as follows: starting material: 85 wt% $Ca_{10}(PO_4)_6(OH)_2$, binder: 5 wt% PVA and 15 wt% ${\alpha}-Ca_3(PO_4)_2$, heating temperature: $1000^{\circ}C$, duration: 3 hrs. The ceramic balls obtained under these conditions showed specific surface area of $110m^2/g$, pore size of $120{\mu}m$ and porosity of 80%. Also, as the results of a performance test on a rate of adsorbing and removing heavy metals in the drinking water by using the.AAS, heavy metals such as Zn, Mn, Fe and Cu were removed to the extent that their content became 0.03mg/l or lower after 1 day and they showed an excellent bactericidal activity that all coliforms were killed after 3 hrs.

Preparation of L-cysteine Salicylaldehyde Schiff-base Modified Macroporous Polystyrene Resin and Its Application to Determination of Trace Cadmium and Lead in Environmental Water Samples

  • Xie, Fazhi;Zhang, Fengjun;Xuan, Han;Ge, Yejun;Wang, Yin;Li, Guolian;Zhu, Lei;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.472-476
    • /
    • 2014
  • In this work, a new method that utilizes L-cysteine salicylaldehyde Schiff-base modified macroporous polystyrene resin (PS-CSC) as an effective sorbent has been developed for preconcentration of trace cadmium and lead in environmental water samples. The effect of pH, the contact time, the elution conditions, the flow rate, the initial concentration of target metal ions, and the effects of interfering ions on the preconcentration of the analytes were investigated. The maximum adsorption capacity of PS-CSC under optimum conditions for cadmium and lead were found to be 6.03 - 18.17 mg/g and 12.58 - 36.13 mg/g when the initial concentration of metal ions between 5.0 - 90 mg/L. The limits of detection for cadmium and lead were 2.46 ng/L and $0.52{\mu}g/L$, with a preconcentration factor of 200. The developed method has been validated by analyzing certified reference material and successfully applied for the enrichment and determination of trace cadmium and lead from environmental water samples.

Bioavailability of Aspartic Acid Chelated Calcium in Calcium Deficient Rats (아스파르트산 킬레이트 칼슘의 칼슘 결핍쥐에서의 생물학적 유용성)

  • Park, Myoung-Gyu;Ha, Tae-Yul;Shin, Kwang-Soon
    • Journal of Nutrition and Health
    • /
    • v.44 no.6
    • /
    • pp.474-480
    • /
    • 2011
  • Calcium (Ca) is an essential element to maintain body homeostasis. However, many factors disturb calcium absorption. Aspartic acid chelated calcium (AAC) was synthesized by new methods using calcium carbonate and aspartic acid. This study was carried out to investigate the bioavailability of AAC in Ca-deficient rats. The experimental groups were as follows: NC; normal diet control group, CD-C; untreated control group of Ca-deficient (CD) rats, CD-$CaCO_3$; $CaCO_3$ treated group of CD rats, CD-AAC; AAC treated group of CD rats, and CD-SWC; and seaweed-derived Ca treated group of CD rats. The Ca content of various types of Ca was held constant at 32 mg/day, and the four CD groups were fed for 7 days after randomized grouping. Ca content in serum, urine, and feces within feeding periods were analyzed to confirm Ca absorption. Serum Ca content was significantly higher in the CD-AAC (11.24 mg/dL) and CD-SWC (10.12 mg/dL) groups than that in the CD-C (8.6 mg/dL) group 2 hours following the first administration. The Ca content in feces was significantly lower in the CD-AAC (35.4 mg/3 days) and CD-SWC (71.1 mg/3 day) groups than that in the CD-$CaCO_3$ (98.7 mg/3 days) group (p > 0.05). AAC had a 2.3-fold higher absorption rate of Ca than that of SWC. No differences in fibula length were observed in the NC and CD groups. The fibula weights of the CD-AAC (0.33 g) and CD-SWC (0.33 g) groups increased compared to those in the CD-C (0.27 g) group; however, no significant difference was observed between the CD groups. We conclude that bioavailability of AAC is higher than that of seaweed-derived Ca or inorganic Ca. Thus, these findings suggest the AAC has potential as a functional food material related to Ca metabolism.