• Title/Summary/Keyword: Adsorption mechanism

Search Result 442, Processing Time 0.02 seconds

A Study of Removal Property of Harmful Algal Blooms by Hwangto and Oriental Mineral Medicines (황토와 광물성 한약재의 적조구제 특성에 관한 연구)

  • Kim, Pil-Geun;Sung, Kyu-Youl;Jang, Young-Nam;Park, Maeng-Eon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.277-289
    • /
    • 2006
  • This study was carried out to find a new material having high removal efficiency for the harmful red tide. C. polykrikoides grow very fast and accumulate into dense and visible patches near the surface of the seawater ('Water bloom'). Some mineral medicines and Hwangto (reddish soil consist of clay minerals and Fe-oxides) were used in this study to remove C. polykrikoides. The pre-determined sprinkling ratio of mineral vs. seawater which contains approximately 5,000 cells/mL of C. polykrikoides was 10 g/L. In order to quantify the removal efficiency, the density of living cells was measured by counting with the Intervals of 0, 10, 30, and 60 minutes after sprinkling. Five Hwangtos feom different localities were examined in this study. It is found that a material with a high concentration of Fe and Al was the most effective to remove C. polykrikoides. After the sprinkling of the Hwangto showing the best removal efficiency in the test, 99% of total algaes were found to be eliminated within 60 minutes. Jeokeokji showed the highest removal efficiency among clay mineral medicines(92% removal efficiency after 60 minutes), and the rests in decreasing order are as follows: Gamto (91%) > Baekseokji (89%) > Hydromica (81%). In addition, Fe-oxide mineral medicine similarly looking as fine-grained earthy Daejaseok showed 100% removal efficiencyafter 30 minutes, and Wooyoeryang, 95% after 60 minutes. It is noted that even little addition (1 g/L) of Daejaseok, 10% of Hwangto concentration into seawater showed the removal efficiency of 100% after 60 minutes. From the results, it could be concluded that the fine-grained earthy Daejaseok was the most effective natural mineral medicine to remove the C. polykrikoides from seawater. Under the microscope the removal mechanism was found to be activated in the following order: adsorption, swelling of chain colony, chain colony crisis and algaecide.

X-ray Absorption Spectroscopy Study on Surface Interaction of Arsenite onto Two-Line Ferrihydrite at pHs 4 and 10 (pH 4와 10에서의 3가 비소와 Two-Line Ferrihydrite의 표면반응에 대한 X선 흡수 분광 연구)

  • Lee, Woo-Chun;Choi, Sun-Hee;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.73-82
    • /
    • 2011
  • X-ray absorption spectroscopy (XAS) study was conducted using arsenite-sorbed two-line ferrihydrite to investigate the mechanism of surface interactions between two-line ferrihydrite and As(III) (arsenite) which are ubiquitous in nature. The two-line ferrihydrite used was synthesized in the laboratory and the study was undertaken at pHs 4 and 10 to compare the difference in mechanisms of surface interaction between acidic and alkaline environments. The effect of arsenite-adsorbed concentrations on surface complexation was investigated at each pH condition as well. From the results of XAS analyses, the structural parameters of arsenite in the EXAFS revealed that the coordination number and distanceof As-O were 3.1~3.3 and 1.74~1.79 ${\AA}$, respectively, which indicate that the unit structure of arsenite complex formed on the surface of two-line ferrihydrite is $AsO_3$. The dominant structures of As(III)-Fe complex were examined to be bidentate binuclear comer-sharing ($^2C$) and the mixture of bidentate mononuclear edge sharing ($^2E$) and $^2C$ appeared as well. At pH 4, arsenite complex showed different structures on the surface of two-line ferrihydrite, depending on the adsorbed concentrations. At pH 10, on the contrary, the surface structures of arsenite complexes were interpreted to be almost identical, irrespective of the adsorbed concentrations of arsenite. Consequently, this microscopic XAS results support the results of macroscopic adsorption experiments in which the surface interaction between arsenite and two-line ferrihydrite is significantly influenced by pH conditions as well as arsenite concentrations.