• Title/Summary/Keyword: Adsorption equilibrium

Search Result 679, Processing Time 0.021 seconds

Mathematical Model for Adsorption of Berberine on Encapsulated Adsorbent (캡슬에 고정화된 흡착제에의 Berberine의 흡착에 관한 수학적 모델)

  • 최정우;조상원이원홍
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.358-369
    • /
    • 1995
  • A mathematical model using local thermodynamic equilibrium isotherms for adsorption in encapsulated adsorbent is proposed in order to optimize the design parameters in situ bioproduct separation process. The model accurately follows the experimental data on the adsorption of berberine, secondary metabolite produced in Thaictrum rugosum plant cell culture. The adsorption rate on encapsulated adsorbent is compared with that on alginate-entrapped adsorbent. The result shows that the higher loading capacity in encapsulated adsorbent is mainly due to the increase in the maximum solid phase concentration. Based on the adsorption rate and loading capacity, the encapsulated adsorbent would be more useful than the entrapped adsorbent when used in situ bioproduct separation process. Design parameters in situ bioproduct separation process, such as the size of the capsule, membrane thickness, the ratio of capsule volume to bulk volume, the ratio of single capsule volume to total capsule volume and the adsorbent content in the capsule, are evaluated by using the model. The ratio of single capsule volume to total capsule volume is the most effective parameter for adsorption of berberine on encapsulated adsorbent.

  • PDF

Removal of Amaranth by Activated Carbon Adsorption (활성탄 흡착에 의한 Amaranth의 제거)

  • Lee, Jong-Jib;Yoon, Sung-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.34-39
    • /
    • 2009
  • The adsorption characteristics of amatanth by granular activated carbon were experimently investigated in the batch adsorber and the packed column. The adsorptivity of activated carbon for amaranth were largely improved by pH control, and 94 percent of initial concentration(100mg/L) could be removed at pH 9. It was estabilished that the adsorption equilibrium of amaranth on granular activated carbon was sucessfully fitted by Freundlich isotherm equation in the concentration range from 1mg/L to 100mg/L. The characteristics of breakthrough curve of activated carbon packed column, which depend on the design variables such as initial concentration, bed height, and flow rate, were studied.

Highly efficient adsorptive removal of uranyl ions from aqueous solutions using dicalcium phosphate nanoparticles as a superabsorbent

  • Saghatchi, Hadis;Ansari, Reza;Mousavi, H. Zavvar
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1112-1119
    • /
    • 2018
  • Dicalcium phosphate nanoparticles (DCP-NPs) was synthesized chemically and used for adsorptive removal of uranyl ions from aqueous solutions in a batch system. A commercial grade of DCP (monetite) was also employed for comparison. The synthesized and commercial adsorbents (S-DCP and C-DCP) were characterized by FT-IR, SEM and XRD techniques. The investigation of adsorption isotherms indicated that the maximum adsorption capacities ($q_m$) for C-DCP and S-DCP were 714.3 and $666.7mg\;g^{-1}$ (at 293 K), respectively. The experimental kinetics were well-described by the pseudo-second-order kinetic and the equilibrium data were fitted with both Langmuir and Freundlich adsorption models. Thermodynamic studies indicated that the adsorption of uranyl ions on the monetite surface was a spontaneous exothermic process. The exhausted adsorbents could be regenerated by washing with $0.10mol\;L^{-1}$ NaOH.

Adsorption of lisinopril and chlorpheniramine from aqueous solution on dehydrated and activated carbons

  • El-Shafey, El-Said I.;Al-Lawati, Haider A. J.;Al-Saidi, Wafa S. H.
    • Carbon letters
    • /
    • v.19
    • /
    • pp.12-22
    • /
    • 2016
  • Date palm leaflets were used as a precursor to prepare dehydrated carbon (DC) via phosphoric acid treatment at 150℃. DC, acidified with H3PO4, was converted to activated carbon (AC) at 500℃ under a nitrogen atmosphere. DC shows very low surface area (6.1 m2/g) while AC possesses very high surface area (829 m2/g). The removal of lisinopril (LIS) and chlorpheniramine (CP) from an aqueous solution was tested at different pH, contact time, concentration, and temperature on both carbons. The optimal initial pH for LIS removal was 4.0 and 5.0 for DC and AC, respectively. However, for CP, initial pH 9.0 showed maximum adsorption on both carbons. Adsorption kinetics showed faster removal on AC than DC with adsorption data closely following the pseudo second order kinetic model. Adsorption increases with temperature (25℃–45℃) and activation energy (Ea) is in a range of 19–25 kJ mol/L. Equilibrium studies show higher adsorption on AC than DC. Thermodynamic parameters show that drug removal is endothermic and spontaneous with physical adsorption dominating the adsorption process. Column adsorption data show good fitting to the Thomas model. Despite its very low surface area, DC shows ~70% of AC drug adsorption capacity in addition of being inexpensive and easily prepared.

Adsorption Treatment Characteristics of Cadmium Ion Containing Wastewater Using Waste Tire as an Adsorbent (폐타이어를 흡착제로 한 카드뮴 함유 폐수 처리 특성)

  • Baek, Mi-Hwa;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.498-503
    • /
    • 2006
  • Adsorption features of $Cd^{2+}$ on waste tire particles have been investigated for the purpose of enhanced wastes recycling along with the development of an economic process for wastewater treatment. The isoelectric point of waste tire particles was found to be ca. pH 7 and the adsorbed amount of $Cd^{2+}$ was increased with pH under experimental conditions. The variation of the adsorption behavior of $Cd^{2+}$ with pH was well explained by the change of the electrokinetic potential of waste tire particles according to the pH. Adsorption of $Cd^{2+}$ was observed to reach its equilibrium within 45 minutes after the adsorption started under experimental conditions and followed the Freundlich model well. Kinetic analysis showed that the adsorption reaction of $Cd^{2+}$ was second order and thermodynamic estimation substantiated the endothermic behavior of $Cd^{2+}$ adsorption. As the amount of adsorbent increased, more adsorption of $Cd^{2+}$ was accomplished and the adsorption capacity of adsorbent was found to be enhanced by its pre-treatment with NaOH. Also, the adsorption of adsorbate was promoted as the ionic strength of wastewater was increased.

Pressure Swing Adsorption Based Hydrogen Purification Vessel 3D Modeling and Feasibility Study (Pressure Swing Adsorption 기반 수소정제용기 3차원 모델링 및 타당성 검증 연구)

  • CHA, YOHAN;CHOI, JAEYOO;JU, HYUNCHUL
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.197-204
    • /
    • 2021
  • Pressure swing adsorption is a purification process which can get pure hydrogen. The purification process is composed of four process: compression, adsorption, desorption and discharge. In this study the adsorption process was simulated by using the Fluent and validated with experimental results. A gas used in experiment is composed of H2, CO2, CH4, and CO. Adsorption process conducted under 313 kelvin and 3 bar and bituminous-coal-based (BPL) activated carbon was used as the adsorbent. Langmuir model was applied to explain the gas adsorption. And diffusion of all the gases was controlled by micro-pore resistances. The result shows that, the most adsorbed gas was carbon dioxide, followed by methane and carbon monoxide. And carbon monoxide took the least amount of time to reach the maximum adsorption amount. The molar fraction of the off-gas became the same as the molar fraction of the gas supplied from the inlet after adsorption reached the equilibrium.

Evaluation of the adsorptive capacity of spent coffee powder for the removal of aqueous organic pollutants (액상 유기오염물질에 대한 폐커피가루의 흡착능력 평가)

  • Kim, Seulgi;Na, Seungmin;Son, Younggyu
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.39-44
    • /
    • 2016
  • The reuse of spent coffee powder has been researched for environmental engineering applications such as adsorbents of organic/inorganic pollutants. In this study adsorption equilibrium tests and adsorption kinetics tests for the removal of aqueous organic pollutant (methylene blue) were conducted using spent coffee powder, granular activated carbon, and powdered activated carbon. It was found that the maximum adsorption capacity of three adsorbents followed the order of powdered activated carbon (178.6 mg/g) > spent coffee powder (60.6 mg/g) > granular activated carbon (15.6 mg/g). The results of adsorption kinetics tests also indicated that spent coffee powder had higher kinetic parameters than granular activated carbon for pseudo 1st and 2nd order kinetics. The high performance of spent coffee powder might be due to its porous surface like those of granular and powdered activated carbons and smaller particle size comparing with granular activated carbon.

Comparison Study on the Removal of Cationic Dyes from Aqueous Suspension of Maghnia Montmorillonite (Maghnia 산 Montmorillonite 수용액으로부터 양이온 염료의 제거 비교연구)

  • Elaziouti, A.;Laouedj, N.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.3
    • /
    • pp.300-309
    • /
    • 2010
  • The ability of sodium-exchanged clay particles as an adsorbent for the removal of commercial dyes, Methylene blue (MB) and Malachite green oxalate (MG) from aqueous solutions has been investigated under various experimental conditions. The effect of the experimental parameters, such as pH solution, agitation time, adsorbate concentration and adsorbent dose were examined. Maximum adsorption of dyes, i.e. >90% has been achieved in aqueous solutions using 0.03 g of clay at a pH of 7 and 298 K for both dyes. The adsorption process was a fast and the equilibrium was obtained within the first 5 min. For the adsorption of both MB and MG dyes, the pseudo-second-order reaction kinetics provides the best correlation of the experimental data. The adsorption equilibrium results follow Langmuir and Dubini-Radushkevich (D-R) isotherms with high regression coefficients $R^2$ > 0.98. The mean free energies $E_a$ of adsorption from D-R model were 3.779 and 2.564 kj/mol for MB and MG respectively, which corresponds to a physisorption process.

Physicochemical Characteristics of Selective Adsorption of Tin Phosphate on the Transition metal ions (전이금속 이온에 대한 주석 인산염의 선택적 흡착에 관한 물리화학적 특성)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1222-1228
    • /
    • 2020
  • The adsorption and ion exchange properties of tin phosphate were studied in an aqueous solution of KCl, varing the pH and metal ion concentration in the solution. The data were explained on the basis of chemical equilibrium. Tin phosphate behaved as an acidic ion exchanger and had an adsorption selectivity toward the bivalent transition metal ions in the following order : Cu+2 > Co+2 > Ni+2. As in the case of a weekly acidic exchanger, the change in hydration of metal ions played the dominant role in determining the selectivity of tin phosphate. In all cases the extent of adsorption increased with an increase in temperature and concentration. The apperance of irregular kinks in the titration curves justified the presence of several exchangeable adsorption sites with different pKa values.

Magnetic biochar from alkali-activated rice straw for removal of rhodamine B from aqueous solution

  • Ren, Zhaogang;Chen, Fang;Wang, Bin;Song, Zhongxian;Zhou, Ziyu;Ren, Dong
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.536-544
    • /
    • 2020
  • To address organic dye wastewater, economic and effective adsorbents are required. Here, magnetic biochar from alkali-activated rice straw (AMBC) was successfully synthesized using one-step magnetization and carbonization method. The alkaline activation caused the large specific surface area, high pore volume and abundant oxygen-containing groups of the AMBC, and the magnetization gave the AMBC a certain degree of electropositivity and fast equilibrium characteristics. These characteristics collectively contributed to a relative high adsorption capacity of 53.66 mg g-1 for this adsorbent towards rhodamine B (RhB). In brief, RhB can spontaneously adsorb onto the heterogeneous surface of the AMBC and reach the equilibrium in 60 min. Although the initial pH, ionic strength and other substances of the solution affected the adsorption performance of the AMBC, it could be easily regenerated and reused with considerable adsorption content. Based on the results, H-bonds, π-π stacking and electrostatic interactions were speculated as the primary mechanisms for RhB adsorption onto the AMBC, which was also demonstrated by the FTIR analysis. With the advantageous features of low cost, easy separation, considerable adsorption capacity and favorable stability and reusability, the AMBC would be a potential adsorbent for removing organic dyes from wastewater.