• Title/Summary/Keyword: Adsorption and dissociation

Search Result 44, Processing Time 0.027 seconds

Gas Sensitization of Tin Oxide Film by Resistance

  • Chwa, Sang-Ok;Park, Hee-Chan;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.183-188
    • /
    • 1998
  • Gas sensitizations of tin oxide film were investigated by measuring the change of film resistance in various gas atmospheres such as $N_2,\; O_2,\; H_2O$. The main test sample, polycrystalline $SnO_2$ film containing small Sb as a dopant was prepared by a sputtering technique and showed a long term stability in base resistance and thus, in gas sensitivity. The adsorption of oxygen on the film surface as a type of $(O_{ads})$ at the temperature of around $300^{\circ}C$ played important roles in sensor operating mechanism. The roles were ⅰ) the increase of base resistance in ambient air, which consequently lead to high sensitivity and ⅱ) the promotion of fast recovery. The reaction of hydrogen gas with the already adsorbed $(O_{ads})$ ions was considered as a decisive sensitization mechanism of tin oxide film. However, the dissociation of hydrogen molecules on film surface, by direct donation of electron to film also took a major part in the sensitization. The effect of humidity on gas sensitization was found to be negligible at the sensor operating temperature of around $300^{\circ}C$.

  • PDF

Adsorption Characteristic of L-tryptophan of Affinity Membrane (친화막의 L-tryptophan 흡착특성)

  • Byun, Hong-Sik;Hong, Byung-Pyo
    • Membrane Journal
    • /
    • v.18 no.3
    • /
    • pp.214-218
    • /
    • 2008
  • Protain affinity membranes based on PES-BSA was preapared by the electrospinning method. The process problem caused by the electrospining was solved by using HFB having high solubility and boiling point. It was expecting that the mass production of protein affinity membrane would be possible with broad range of optimized temperature and humidity. BSA in the PES nanofiber was confirmed by the color change from colorless to violet during the biuret test. The buffer solution with DMSO showed that the amount of elution was 5 times higher than the one when the buffer solution without DMSO was used. This is due to the restriction effect of DMSO on the dissociation of L-tryptophan from BSA during the washing step.

Electrochemical Catalytic Behavior of Cu2O Catalyst for Oxygen Reduction Reaction in Molten Carbonate Fuel Cells

  • Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam;Han, Jonghee;Yoon, Sung Pil;Kang, Min-Goo;Jang, Seong-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.195-201
    • /
    • 2018
  • To enhance the performance of cathodes at low temperatures, a Cu-coated cathode is prepared, and its electrochemical performance is examined by testing its use in a single cell. At $620^{\circ}C$ and a current density of $150mAcm^{-2}$, a single cell containing the Cu-coated cathode has a significantly higher voltage (0.87 V) during the initial operation than does that with an uncoated cathode (0.79 V). According to EIS analysis, the high voltage of the cell with the Cu-coated cathode is due to the dramatic decrease in the high-frequency resistance related to electrochemical reactions. From XPS analysis, it is confirmed that the Cu is initially in the form of $Cu_2O$ and is converted into CuO after 150 h of operation, without any change in the state of the Ni or Li. Therefore, the high initial cell voltage is confirmed to be due to $Cu_2O$. Because $Cu_2O$ is catalytically active toward $O_2$ adsorption and dissociation, $Cu_2O$ on a NiO cathode enhances cell performance and reduces cathode polarization. However, the cell with the Cu-coated cathode does not maintain its high voltage because $Cu_2O$ is oxidized to CuO, which demonstrates similar catalytic activity toward $O_2$ as NiO.

Study of Improvement Life and Electrochemical Characteristics for Lithium/sulfur Battery using Porous Carbon Sphere (다공성 구형 탄소를 이용한 리튬/유황 전지의 수명개선 및 전기화학특성 연구)

  • Hur, Sung Kyu;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.42-51
    • /
    • 2021
  • Dissociation into Lithium-polysulfide electrolyte due to repeated cycles during the Lithium/Sulfur battery reaction is a major problem of reduced battery lifespan. We searched for a porous carbon with a large specific surface area that infiltrated S to prevent liquid Lithium-polysulfide from being dissolved in electrolyte, induce adsorption of Lithium-polysulfide, and further increase conductivity. In order to obtain porous carbon spheres with a large specific surface area, the carbon spheres of 1939 m2/g were raised to 2200 m2/g through additional KOH treatment. In addition, through heat treatment with S, a carbon sulfur compound containing 75 wt% of S was fabricate and material analysis was conducted on the possibility of using the cathode material. The electrochemical characteristics of the Reference (622; sulfur: 60%, conductive material: 20%, binder: 20%) pouch cell and the pouch cell made using 75wt% of carbon sulfur compound were analyzed. 75wt% of carbon sulfur pouch cell showed a 20% increase in lifespan and 10% improvement in C-rate compared to the Reference pouch cell after 50 cycles.