• Title/Summary/Keyword: Adsorption and Removal

Search Result 1,344, Processing Time 0.032 seconds

Nitrification at Low Concentration of NH4+-N by using Attached Growth in Zeolite Media (제올라이트 여재의 부착성장을 이용한 저농도 NH4+-N의 생물학적 질산화 처리)

  • Kim, Jin-Su;Kang, Min-Koo;Yang, Chang-Hwan;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.561-567
    • /
    • 2017
  • This study focused on estimating the low concentration of $NH_4{^+}-N$ removal by using simultaneous reaction of the adsorption and microbial nitrification with microbe-attached zeolite media. To evaluate the adsorption effect of the zeolite media, the expanded polypropylene (EPP) media which are not able to adsorb $NH_4{^+}-N$ were used as a control media in order to compare the adsorption ability. Each media was used to experiment after aerated 8 hr for attachment of the microbes. The batch experiment shows that nitrification occurred in zeolite media better than EPP media because nitrifiers could consume the relatively enough amount of $NH_4{^+}-N$ adsorbed onto the zeolite media. Compared to the reactor with EPP media, nitrification occurred only in the reactor with zeolite media under continuous operation at the empty bed contact time (EBCT) of 25 min and 3 mg/L of $NH_4{^+}-N$ concentration. As the EBCT of the reactor with zeolite media increased from 10 to 60 min, the nitrification efficiencies increased too. $NH_4{^+}-N$ removal efficiency showed up more than 90% at EBCT 60 min. And the difference in concentration of the total nitrogen between the influent and the effluent was 0.25 mg/L at EBCT 10 min, 0.78 mg/L at EBCT 25 min, 0.59 mg/L at EBCT 40 min and 0.37 mg/L at EBCT 60 min, respectively. This difference was due to between adsorption rate and nitrification rate of $NH_4{^+}-N$, and it was considered that $NH_4{^+}-N$ was adsorbed on the zeolite media by the gap of the concentration.

Effect of Advanced Treatment Process for Residual Chlorine Decay and THM Formation in Water Distribution System (고도처리공정이 관로 내 잔류염소 감소 및 THM 생성에 미치는 영향)

  • Lee, Doo-Jin;Kim, Young-Il;Kim, Sung-Su;Lee, Kyung-Hyuk;Park, Hyun-A
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.419-424
    • /
    • 2007
  • According to increase of consumer's desire for clean tap water, advanced treatment processes include with membrane, ozone, and granular activated carbon(GAC) were introduced. In order to evaluate the effect of advanced treatment processes for residual chlorine decay and trihalomethane(THM) formation in water distribution system, dissolved organic matter(DOC) removal of each advanced treatment process was investigated. The residual chlorine decay and THM formation using bottle tests were also evaluated. $UV_{254}$ removal in all advanced treatment was better than DOC removal. Especially, DOC by ozone treated was removed as 4% in contrast with sand filtered water, but $UV_{254}$ was removed about 17%. This result might be due to convert from hydrophobic DOC to hydrophilic DOC by ozonation. Ozone/GAC process was most effective process for DOC removal. The residual chlorine decay constants in treated water by sand filtration, ozonation, GAC adsorption, and ozone/GAC processes were 0.0230, 0.0307, 0.0117 and 0.0098 $hr^{-1}$, respectively. The sand filtered water was produced 81.8 ${\mu}g/L$ of THM after 190 hours of reaction time, as the treated water by ozone, GAC, and Ozone/GAC was less produced 6.0, 26.2, 30.3% in contrast with sand filtered water, respectively. Consequently, the durability of residual chlorine and reduction of THM formation were improved by advanced treatment processes.

Analysis of cause of engine failure during power generation using biogas in sewage treatment plant (하수처리장 바이오가스를 이용한 발전시 가스엔진의 고장원인 분석)

  • Kim, Gill Jung;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.13-29
    • /
    • 2016
  • In this study, we analyzed the causes of major faults in the biogas plant through the case of gas engine failure when cogenerating electricity and heat using biogas as a fuel in the actual sewage treatment plant and suggested countermeasures. Hydrogen sulfide in the biogas entering the biogas engine and water caused by intermittent malfunction of the water removal system caused intercooler corrosion in the biogas engine. In addition, the siloxane in the biogas forms a silicate compound with silicon dioxide, which causes scratches and wear of the piston surface and the inner wall of the cylinder liner. The substances attached to the combustion chamber and the exhaust system were analyzed to be combined with hydrogen sulfide and other impurities. It is believed that hydrogen sulfide was supplied to the desulfurization plant for a long period of time because of the high content of hydrogen sulfide (more than 50ppm) in the biogas and the hydrogen sulfide was introduced into the engine due to the decrease of the removal efficiency due to the breakthrough point of the activated carbon in the desulfurization plant. In addition, the hydrogen sulfide degrades the function of the activated carbon for siloxane removal of the adsorption column, which is considered to be caused by the introduction of unremoved siloxane waste into the engine, resulting in various types of engine failure. Therefore, hydrogen sulfide, siloxane, and water can be regarded as the main causes of the failure of the biogas engine. Among them, hydrogen sulfide reacts with other materials causing failure and can be regarded as a substance having a great influence on the pretreatment process. As a result, optimization of $H_2S$ removal method seems to be an essential measure for stable operation of the biogas engine.

The Removal Characteristics of Cs$^{+}$ and Co$^{++}$ from Aqueous Wastes by Ultrafiltration in Combination with Chemical Treatment Techniques(II) (화학처리와 한외여과막의 결합공정에 의한 Cs 및 Co의 제거특성 (II))

  • 이근우;정경환;김길청;김준형
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.56-64
    • /
    • 1996
  • The objective of this investigation is to establish the rejection characteristics of caesium and cobalt from radioactive liquid waste by chemical/ultrafiltration process. An extensive experimental investigation was conducted with inactive caesium and cobalt ions, utilizing ultrafiltration stirred cell. Caesium and cobalt could be effectively removed from waste solution using copper ferrocyanide and polyarcylic acid(PAA). The rejection dependence of the caesium was found to be a function of caesiun to potassium copper ferrocyanide feed molar ratio. The binding behavior of caesium on K$_2$Cu$_3$(Fe(CN)$\sub$6/)$_2$, particles was explained in terms of a Langmuir adsorption isotherm. When Cs/K$_2$Cu$_3$(Fe(CN)$\sub$6/)$_2$molar ratio was 1.5, the removal of caesium was the most efficient. The rejection efficiency of cobalt is dependent upon various parameters such as pH, cobalt concentration and PAA concentration. The rejection behavior of cobalt was explained in term of a equilibrium model taking into account the reaction between the ligand group, the proton and the cobalt ion. At the conditions of PAA/Co ratio of 2 and pH of 5.6, the removal of cobalt was over 90%. Also, the effect of chemical addition sequence for the simultaneously removal of caesiun and cobalt was discussed.

  • PDF

Study on Removal of Cesium in Water Treatment System (물속의 방사성핵종(세슘) 제거율 연구)

  • Jeong, Gwanjo;Son, Boyoung;Ahn, Chihwa;Lee, Suwon;Ahn, Jaechan;Kim, Bogsoon;Chung, Deukmo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • This study investigated the removal of a radioactive cesium ($Cs^+$) in the water at the water treatment processes. Since cesium is mostly present as the $Cs^+$ ion state in water, it is not removed by sand filtration, and coagulation with polyaluminum chloride (PACl), powdered activated carbon (PAC) and mixture of PACl and PAC. However, it is known that the removal rate of cesium increases as the turbidity increases in raw water. As the turbidity was adjusted by 74 NTU and 103 NTU using the surrounding solids near G-water intake and yellow soils, removal rate of cesium was about 56% and 51%, respectively. In case of a GAC filtration with supernatants after jar-mixing/setting was conducted, 80% of cesium is approximately eliminated. The experimental results show that it is efficient to get rid of cesium when the turbidity of the raw water is more than 80 NTU. In case of a GAC filtration, about 60% of cesium is removed and it is considered by the effect of adsorption. Cesium is not eliminated by microfiltration membrane while about 75% of cesium is removed by reverse osmosis.

Adsorption Characteristics of Heavy Metal Ions onto Chemically Modified Rice Husk and Sawdust from Aqueous Solutions (화학적으로 개질된 왕겨 및 톱밥(미송, 참나무, 포플러)의 중금속 흡착특성)

  • Lee, Hyeon-Yong;Jeon, Choong;Lim, Kyoung-Jae;Hong, Ki-Chan;Lim, Jung-Eun;Choi, Bong-Su;Kim, Nam-Won;Yang, Jae-E;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.158-164
    • /
    • 2009
  • Biosorption uses adsorbents derived from non-living biomass and removes toxic metals from industrial wastewater. The objective of this research was to evaluate the potential of low cost biosorbents to remove heavy metal ions (Cd, Cu, Pb and Zn) from aqueous solutions using chemically modified rice husk and saw dust (Pseudotsuga menziesi, Quercus, Populus). Batch-type adsorption experiments were carried out using rice husk and saw dust treated with NaOH and/or tartaric acid in artificial wastewater 100 mg metal/L). The experimental results showed that the adsorption specificity of each biosorbent was Pb > Cu > Cd > Zn irrespective of the types of biosorbents. The adsorption capacity of Pb and Cu onto NaOH-treated sawdust was increased 2${\sim}$3 times compared to the untreated one. In addition, the tartaric acid treatment increased the adsorption capacity of rice husk for Zn and Cd approximately 5${\sim}$10 fold compared to the untreated one. Surface conditions and changes in functional groups by chemical modification of each biosorbent were confirmed by SEM and FT-IR. Overall, the results show that chemical modification increases the metal removal capacity of rice bran and sawdust.

Evaluation on the suspended solids and heavy metals removal mechanisms in bioretention systems

  • Geronimo, Franz Kevin F.;Maniquiz-Redillas, Marla C.;Hong, Jungsun;Kim, Lee-Hyung
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.91-97
    • /
    • 2019
  • Application of bioretention systems in Korea is highly considered due to its minimal space requirements, appropriateness as small landscape areas and good pollutant removal and peak hydraulic flow reduction efficiency. In this study, the efficiency of two lab-scale bioretention types having different physical properties, media configuration and planted with different shrubs and perennials was investigated in reducing heavy metal pollutants in stormwater runoff. Type A bioretention systems were planted with shrubs whereas type B were planted with perennials. Chrysanthemum zawadskii var. latilobum (A-CL) and Aquilegia flabellata var. pumila (A-AP) respectively were planted in each type A bioretention reactors while Rhododendron indicum linnaeus (B-RL) and Spiraea japonica (B-SJ), respectively were planted in each type B bioretention reactors. Results revealed that the four lab-scale bioretention reactors significantly reduced the influent total suspended load by about 89 to 94% (p<0.01). Type B-RL and B-SJ reactors reduced soluble Cr, Cu, Zn, and Pb by 28 to 45% that were 15 to 35% greater than the soluble metal reduction of type A-CL and A-AP reactors, respectively. Among the pollutants, total Cr attained the greatest discharged fraction of 0.52-0.81. Excluding the effect of soil media, total Pb attained the greatest retention fraction in the bioretention systems amounting to 0.15-0.34. Considering the least discharge fraction of heavy metal in the bioretention system, it was observed that the bioretention systems achieved effectual reduction in terms of total Cu, Zn and Pb. These findings were associated with the poor adsorption capacity of the soil used in each bioretention system. The results of this study may be used for estimating the maintenance requirements of bioretention systems.

The Characteristics of Oxidation and Adsorption Processes for 2-Methylisoborneol(2-MIB) Removing (2-Methylisoborneol(2-MIB)제거를 위한 산화 및 흡착공정의 특성)

  • 최근주;김상구;류동춘;신판세;손인식;오광중
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.241-246
    • /
    • 2002
  • One of the Musty and earthy smell compounds in raw water is generally attributed to 2-methylisoborneol (2-MIB). It is well known that activated carbon and oxidants such as $O_3$, Cl $O_2$, are effective ways to control 2-MIB. In isotherm equilibrium experiments, 2-MIB in distilled water was much more adsorbed to the activated carbon(A/C) than raw water containing dissolved organic carbon (DOC). The Freundlich constants(k) of distilled water and raw water were 3.36 and 0.049, and 1/n values were 0.80 and 0.42, respectively. The 2-MIB residual rate were Y = $e^{-0}$.55x/~ $e^{-0}$.54x/ with Ozone( $O_3$) dose by 5 minutes contact time at the 241 and 353 ng/L initial concentrations. The 2-MIB residual rate were Y = $e^{-0}$.32x/~ $e^{-0}$.35x/ with Chlorine dioxide(Cl $O_2$) dose by 15 minutes contact time at the 89 and 249 ng/L initial concentrations. 2-MIB was decreased from 1911 ng/L to 569ng/L by post-ozonation(70%removal efficiency) and removal efficiencies of 2-MIB by the following 4 kinds Granular Activated Carbon(GAC) process such as coal base, coconut base, wood base and zeolite+carbon base were 95.8, 89.5, 88.4, and 93.7% respectively.ely.

Improvement of Rapid Sand Filtration to Two Stage Dual Media Filtration System in Water Treatment Plant (정수처리장내 급속모래 여과지의 이단복합여과시스템으로의 개량)

  • Woo, Dal-Sik;Hwang, Kyu-Won;Kim, Joon-Eon;Hwang, Byung-Gi;Jo, Kwan-Hyung
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.2
    • /
    • pp.141-149
    • /
    • 2011
  • This study aimed for developing a two stage dual media filtration system. It has a sand and activated carbon layer above the under-drain system, and a sand layer above the middle-drain system for pretreatment. When retrofitting an old sand filter bed or designing a new one, this technology can substitute the existing sand filter bed without requiring a new plant site. The removal rate of total particle is 93, and 3~7 ${\mu}m$ and 5~15 ${\mu}m$ particles are all 97%. These high removal efficiencies of each pollutant due to adsorption and biological oxidation in activated carbon filter layer. The best backwashing method of two stage dual media filtration system is ascertained by air injection, air + water injection and water injection sequence. In this study, a pilot plant of two stage and dual filtration system was operated for 4 months in water treatment plant. The stability of turbidity was maintained below 1 NTU. The TOC, THMFP and HAAFP were removed about 90% by two stage and dual media filtration system, which is almost 2 times higher than existing water treatment plant.

A Study on Coagulation and MF Membrane Process for the Reuse of Sewage Effluent (하수처리장 방류수의 응집 및 정밀여과 처리공정에 관한 연구)

  • Paik, Ke-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.3 s.57
    • /
    • pp.36-43
    • /
    • 2005
  • Prior to the study of the sewage treatment methods, water quality for Gwangju sewage of fluent was investigated from January to December, 2004 for sewage water reuse. Monthly mean values of BOD, SS, turbidity, total phosphorus and color were 4.1 mg/L, 2.9 mg/L, 0.8 NTU, 1.3 mg/L, and 27 unit, respectively. Jar-test was performed to investigate the removal efficiency of pollutants under the coagulation conditions of fast mixing for 5 min, slow mixing for 15 min and precipitation for 1hr. Here, alum and polyaluminium chloride (PAC) were used as coagulants to reduce color, turbidity, total phosphorus (TP) and total organic carbon (TOC) in sewage effluents. The results showed that PAC gave better efficiency in removing turbidity and dissolved phosphorus than alum. It was also found from the relative molecular weight (RMW) distribution analysis that organic matter over 1,000 Dalton (Da) was easily removed by coagulation and subsequently MF treatment, while it was not effective for less than 500 Da. Based on tis result, Natural organic matter (NOM) with lower molecular weight (< 500 Da) may cause harmful disinfectant by-product (DBP) after chlorine treatment. Thus, activated carbon adsorption seems to be required for the complete removal of DBP in the hybrid system.