• Title/Summary/Keyword: Adsorption and Penetration

Search Result 35, Processing Time 0.017 seconds

Physical and Mechanical Properties of Composite Panel Manufactured from Wood Particle and Recycled Polyethylene (목재 파티클과 재생폴리에틸렌을 이용한 목질복합패널의 물리·기계적 성질)

  • Han, Tae-Hyung;Kwon, Jin-Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.340-348
    • /
    • 2009
  • The recycled polyethylene was used for making wood-plastic composite panels. In this experiment, the sizes of wood particles used were 1/32", 1/4" and 1/2" in mesh number, and the contents of the recycled polyethylene were 10%, 30% and 50%. The physical and mechanical properties of the composite panels were investigated. At a given content of recycled polyethylene, the density of composite panel decreases with the increase of wood particle size. The thickness swelling and water adsorption decrease with the increase of recycled polyethylene, where significantly lower at 10%, compared with at 30%. In the water soaking experiment for 14 days, the dimensional stability of composite panel appeared good in the composite panel with recycled polyethylene content of 30% or higher. As the content of recycled polyethylene increases, the internal bonding strength and the modulus of rupture in bending strength increases. In SEM, the molten recycled polyethylene showed interlocking action through its penetration into tracheid openings including pits as well as binder between wood particles as the matrix material, thus increasing bonding strength and improving the physical and mechanical properties of composite panel.

Preparation of AC/TiO2 Composites from Activated Carbon Modified by HNO3 and Their Photocatalytic Activity

  • Chen, Ming-Liang;Oh, Won-Chun
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.108-114
    • /
    • 2007
  • In this work, activated carbon (AC) after $HNO_3$ modification was used as the support during the production of supported $TiO_2$ to increase the high deposition efficiency and the photocatalytic activity. The results of $N_2$ adsorption showed that the BET surface area of samples decreased with an increasing of the concentration of $HNO_3$ due to the penetration of $TiO_2$. From XRD data, a single crystal structure of anatase peak was observed in diffraction patterns for the AC coated with titanium complexes. From the SEM results, almost all particles were aggregated with each other at the carbon surface and AC was covered with $TiO_2$ particles in all of the samples. The EDX spectra show the presence of C, O, Ti and other elements. It was also observed a decreasing of amount of C content with increasing Ti and O content from the EDX. The results of FT-IR revealed that the modified AC contained more surface oxygen bearing groups than that of the original AC. The effect of surface acidity and basity calculated from Boehm titration method was also evaluated from correlations as a function of NaOH, $NaHCO_3$, and $Na_2CO_3$ uptake. The surface modification of AC by $HNO_3$ leads to an increase in the catalytic efficiency of AC/$TiO_2$ catalysts, and the catalytic efficiency increases with increasing of $HNO_3$ concentration.

Fibrin affects short-term in vitro human mesenchymal stromal cell responses to magneto-active fibre networks

  • Spear, Rose L.;Symeonidou, Antonia;Skepper, Jeremy N.;Brooks, Roger A.;Markaki, Athina E.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.3
    • /
    • pp.143-157
    • /
    • 2015
  • Successful integration of cementless femoral stems using porous surfaces relies on effective periimplant bone healing to secure the bone-implant interface. The initial stages of the healing process involve protein adsorption, fibrin clot formation and cell osteoconduction onto the implant surface. Modelling this process in vitro, the current work considered the effect of fibrin deposition on the responses of human mesenchymal stromal cells cultured on ferritic fibre networks intended for magneto-mechanical actuation of in-growing bone tissue. The underlying hypothesis for the study was that fibrin deposition would support early stromal cell attachment and physiological functions within the optimal regions for strain transmission to the cells in the fibre networks. Highly porous fibre networks composed of 444 ferritic stainless steel were selected due to their ability to support human osteoblasts and mesenchymal stromal cells without inducing untoward inflammatory responses in vitro. Cell attachment, proliferation, metabolic activity, differentiation and penetration into the ferritic fibre networks were examined for one week. For all fibrin-containing samples, cells were observed on and between the metal fibres, supported by the deposited fibrin, while cells on fibrin-free fibre networks (control surface) attached only onto fibre surfaces and junctions. Initial cell attachment, measured by analysis of deoxyribonucleic acid, increased significantly with increasing fibrinogen concentration within the physiological range. Despite higher cell numbers on fibrin-containing samples, similar metabolic activities to control surfaces were observed, which significantly increased for all samples over the duration of the study. It is concluded that fibrin deposition can support the early attachment of viable mesenchymal stromal cells within the inter-fibre spaces of fibre networks intended for magneto-mechanical strain transduction to in-growing cells.

Enhanced Environmental Stability of Graphene Field-Effect Transistors through Interface Control (계면 제어를 통한 그래핀 기반 전계효과 트랜지스터의 환경 안정성 향상)

  • Seong, Jun Ho;Lee, Dong Hwa;Lee, Eunho
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.75-79
    • /
    • 2022
  • Graphene is a two-dimensional carbon allotrope composed of honeycomb sp2 hybrid orbital bonds. It shows excellent electrical and mechanical properties and has been spotlighted as a core material for next-generation electronic devices. However, it exhibits low environmental stability due to the easy penetration or adsorption of external impurities from the formation of an unstable interface between the materials in the electronic devices. Therefore, this work aims to improve and investigate the low environmental stability of graphene-based field-effect transistors through direct growth using solid hydrocarbons as a precursor of graphene. Graphene synthesized from direct growth shows high electrical stability through reduction of change in charge mobility and Dirac voltage. Through this, a new approach to utilize graphene as a core material for next-generation electronic devices is presented.

Characteristics of Shear Strength and Consolidation Behavior of Soft Ground according to Stage Fill (단계성토에 따른 연약지반의 전단강도 및 압밀거동 특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.7
    • /
    • pp.17-26
    • /
    • 2020
  • The soft ground in the southwest coastal area composed of marine clay is greatly influenced by sediment composition, particle size distribution, particle shape, adsorption ions and pore water characteristics, tide and temperature. In addition, the geotechnical properties are very complex due to stress history, change in pore water, dissolution process and gas formation. In this study, the physical and mechanical properties of the soft ground were evaluated through field tests and laboratory tests to investigate the strength increase characteristics according to consolidation on the soft ground in the southwest coast. In addition, in order to understand the consolidation behavior of soft ground such as subsidence, pore water pressure, horizontal displacement of soil by embankment load, measuring instruments such as pore water pressuremeter, settlement gauge, inclinometer and differential settlement gauge was installed, and a piezocon penetration test was carried out step by step to confirm the increase in shear strength of the ground. Through this, it was confirmed that the shear strength of the ground is increased according to the stages of filling. In addition, by evaluating the properties of consolidation behavior, strength increase and consolidation prediction by empirical methods and theories were compared to analyze the characteristics of strength increase rate and consolidation behavior in consideration of regional characteristics.