• Title/Summary/Keyword: Adsorption and Desorption

Search Result 667, Processing Time 0.029 seconds

Hygroscopic Characteristic of Gypsum Boards Using Porous Materials (다공성 원료를 사용한 석고보드의 흡습 특성)

  • Jeong, Eui-Jong;Lee, Jong-Kyu;Cheong, Deock-Soo;Chu, Yong-Sik;Song, Hun
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.538-543
    • /
    • 2009
  • Active clays, Diatomite, bentonite and zeolite were used as porous materials for fabricating hygroscopic gypsum boards. Pohang active clay and Cheolwon diatomite showed excellent characteristics of moisture adsorption and desorption. These characteristics were caused by higher surface area and pore volume of porous materials. Moisture adsorption content of gypsum board with 10% active clay(P1) was 62.0 g/m$^2$, and moisture desorption content was 50.2 g/m$^2$. Moisture adsorption content of gypsum board with 10% diatomite(P) was 59.5 g/m$^2$, and moisture desorption content was 49.0 g/m$^2$. Moisture adsorption contents of gypsum boards with porous materials were higher than that moisture desorption contents of gypsum board without porous materials. Correlation coefficient between surface area and moisture adsorption content of gypsum boards was 0.98. Also, correlation coefficient between surface area and moisture desorption content of gypsum boards was 0.97. Moisture adsorption and desorption contents were influenced by surface area and pore volume of the gypsum boards, and surface area had a larger effect on moisture adsorption and desorption.

Adsorption and Desorption Characteristics of Carbon Dioxide at Low Concentration on Zeolite 5A and 13X (제올라이트 5A와 13X의 저농도 이산화탄소 흡착 및 탈착특성)

  • Cho, Young-Min;Lee, Ji-Yun;Kwon, Soon-Bark;Park, Duck-Shin;Choi, Jin-Sik;Lee, Ju-Yeol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.191-200
    • /
    • 2011
  • A way to adsorptively remove indoor carbon dioxide at relatively lower concentration under ambient temperature was studied. A small lab-scale carbon dioxide adsorption and desorption reactors were prepared, and 5A and 13X zeolites were packed in this reactors to investigate their adsorption and desorption characteristics. The inflow carbon dioxide concentration was controlled to 5,000 ppm, relatively higher concentration found in indoor spaces with air quality problems, by diluting carbon dioxide with nitrogen gas. The flow rate was varied as 1~5 L/min, and the carbon dioxide concentration after this reactor was constantly monitored to examine the adsorption characteristics. It was found that 5A adsorbed more carbon dioxide than 13X. A lab-scale carbon dioxide desorption reactor was also prepared to investigate the desorption characteristics of zeolites, which is essential for the regeneration of used zeolites. The desorption temperature was varied as $25{\sim}200^{\circ}C$, and the desorption pressure was varied as 0.1~1.0 bar. Carbon dioxide desorbed better at higher temperature, and lower pressure. 5A could be regenerated more than three times by thermal desorption at $180^{\circ}C$. It is required to modify zeolites for higher adsorption and better regeneration performances.

Equilibrium Moisture Content of Korean Ginseng (인삼(人蔘)의 평형함수율(平衡含水率)에 관(關)한 연구(硏究))

  • Choi, B.M.;Lee, J.H.;Park, S.J.;Kim, C.S.;Rhee, J.Y.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.3
    • /
    • pp.247-259
    • /
    • 1992
  • This study intended to measure the desorption and adsorption EMC of four years old Peeled ginseng, Unpeeled ginseng and Taegeuk ginseng under various conditions$20^{\circ}C$, $30^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$) and five levels of relative humidity from 31% to 88%) by the static method. Four widely used EMC models were selected and evaluated. Also the empirical model was evaluated. The results are summarized as follows ; 1) EMC difference between ginseng size was not found but found between ginseng species. EMC difference between Peeled ginseng and Unpeeled ginseng was not found. EMC of Peeled ginseng and Unpeeled ginseng was higher than that of Taegeuk ginseng. 2) The hysteresis, which is difference between desorption and adsorption EMC, was found. Desorption EMC was higher than adsorption EMC. The hysteresis at the same temperature decreased as relative humidity increase. The difference of hysteresis between Peeled ginseng and Unpeeled ginseng was not large and the hysteresis of Taegeuk ginseng was smaller than those of other species. 3) Among the selected models, Henderson model was the best to predict the adsorption EMC of White ginseng(Peeled and Unpeeled ginseng), and Oswin model was the best to predict the desorption EMC of White ginseng and the desorption and adsorption EMC of Taegeuk ginseng. The models are as follows ; (a) White ginseng(Peeled and Unpeeled ginseng) ${\circ}$ Desorption EMC(Oswin model) : $$M=(0.1272-0.0007420T){\cdot}[RH/(1-RH)]^{(0.4164+0.001368T)}$$ ${\circ}$ Adsorption(Henderson model) : $$1-RH={\exp}[-0.0003480T_k\;{M_o}^{0.9231}]$$ (b) Taegeuk ginseng ${\circ}$ Desorption EMC(Oswin model) : $$M=(0.1051-0.0008439T)[RH/(1-RH)]^{(0.4553+0.003425T)}$$ ${\circ}$ Adsorption EMC(Oswin model) : $$M=(0.08247-0.0007559T){\cdot}[RH/(1-RH)]^{(0.5760+0.005540T)}$$ 4) The developed empirical models could predict the desorption and adsorption EMC for White and Taegeuk ginseng more precisely than selected models. The empirical models are as follows ; (a) White ginseng(Peeled and Unpeeled ginseng) ${\circ}$ Desorption EMC : $$M=0.124-0.000647T-0.216RH+0.373RH^2$$ ${\circ}$ Adsorption EMC : $$M=0.0879-0.000663T-0.197RH+0.399RH^2$$. (b) Taegeuk ginseng ${\circ}$ Desorption EMC : $$M=0.159-0.000728T-0.429RH+0.565RH^2$$ ${\circ}$ Adsorption EMC : $$M=0.123-0.000662T-0.384RH+0.555RH^2$$.

  • PDF

Adsorption and Thermal Regeneration of Toluene and Benzene on the Fixed Bed Packed with Activated Carbon and Activated Carbon Fiber

  • Kim, Jong-Hwa;Oh, Ok-Kyun;Haam, Seung-Joo;Lee, Chang-Ha;Kim, Woo-Sik
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.44-54
    • /
    • 2001
  • The characteristics of adsorption and desorption of benzene and toluene were investigated at a fixed bed packed with the activated carbon and activated carbon fiber. Through breakthrough experiments under various feed concentration conditions, it was found that the slope of mass transfer zone and the tailing in the breakthrough curves were different from the feed conditions due to different heats of adsorption. In hot nitrogen desorption, the regeneration time and mass transfer zone of the toluene desorption curve were longer than those of the benzene desorption curve because of the difference in adsorption affinity. With an increase in the regeneration temperature, the height of roll-up and the sharpness of desorption curves increased but the regeneration times decreased. The adsorption capacities of the activated carbon and activated carbon fiber after three-time thermal regenerations decreased about 25% and 37% for benzene and 18% and 25% for toluene, respectively. To investigate the effect of the regeneration temperature on the energetic efficiency, the characteristic desorption temperatures of toluene and benzene were investigated by calculating purge gas consumption and temperature.

  • PDF

Adsorption and Desorption Dynamics of Ethane and Ethylene in Displacement Desorption Process using Faujasite Zeolite (제올라이트(faujasite)를 이용한 치환탈착공정에서 에탄, 에틸렌의 흡, 탈착 동특성)

  • Lee, Ji-In;Park, Jong-Ho;Beum, Hee-Tae;Yi, Kwang-Bok;Ko, Chang-Hyun;Park, Sung Youl;Lee, Yong-taek;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.768-775
    • /
    • 2010
  • Adsorption dynamics of ethane/ethylene mixture gas and desorption dynamics during the displacement desorption with propane as a desorbent in the column filled with faujasite adsorbent were investigated experimentally and theoretically. The simulation that adopted heat and mass balance and an ideal adsorbed solution theory (IAST) for the multicomponent adsorption equilibrium well predicted the experimental breakthrough curves of the adsorption and desorption. At the adsorption breakthrough experiments, roll-ups of ethane increased as the adsorption pressure increased and the adsorption temperature decreased. During the displacement desorption with propane in the column saturated with ethane/ethylene mixture gas, almost 100% of ethylene was obtained for a certain time interval. The adsorption strength of the desorbent greatly affected the adsorption and re-adsorption dynamics of ethylene. The re-adsorption capacity for ethylene has been greatly reduced when iso-propane, which is stronger desorbent than propane, was used as desorbent. It was found from the simulation that the performance of the displacement desorption process would be superior when the ratio of ${(q_s{\times}b)}_{C_2H_4}/{(q_s{\times}b)}_{C_3H_s}$ was 0.83, that is, the adsorption strengths of ethylene and the desorbent were similar.

Environmental Risk Assessment of Polyhexamethyleneguanidine Phosphate by Soil Adsorption/Desorption Coefficient

  • Chang, Hee-Ra;Yang, Kyung-Wook;Kim, Yong-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.365-370
    • /
    • 2006
  • This study was performed to determine the adsorption-desorption characteristics of polyhexame-thyleneguanidine phosphate in three different soil types of textural classification. Adsorption and desorption studies is impotent for prediction their fate and generating essential information on the mobility of chemicals and their distribution in the soil, water and air of our biosphere. The detection limit of the test substance quantified by a spectroscopic method using Eosin indicator was $0.25{\mu}g/mL$. The reproducibility of analytical method was confirmed by the preliminary test. The concentrations of polyhexamethylenequanidine phosphate in aqueous solution were $1.36{\pm}0.09,\;2.45{\pm}0.01,\;and\;$4.25{\pm}0.05{\mu}g/mL$ by a spectroscopic method using Eosin indicator. The adsorption percents of polyhexamethylenequanidine phosphate in soil were greater than 95.2% for all three test soils. The desorption percents from the adsorbed soil were less than 4.5, 4.7 and 4.7%. Therefore, the adsorption coefficient (K) were greater than 110, 111 and 116. The adsorption coefficient calculated as a function of the organic carbon content (Koc) of the test soils were greater than 9,181, 11,100, and 8,942, respectively. Therefore, the test substance, polyhexamethylenequanidine phosphate could be concluded as medium or high adsorption (>25%) and poorly desorption (<75%) in soil media. Therefore, this chemical is likely to be retained in soil media and may not pose a risk in the aquatic environment.

Effects for Coexistent Reductant to NOx Adsorption and Desorption of the NOx Storage Catalyst (공존 환원제가 NOx 흡장촉매의 NOx 흡$\cdot$ 탈착에 미치는 영향)

  • Lee, Choon-Hee;Choi, Byung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.181-187
    • /
    • 2005
  • The behavior of fox adsorption and desorption of the NOx storage catalyst supported on Ba additive were studied by the TPA/TPD experiments and reactivity tests. Applying the transient responses and NOx TPA/TPD test by CLD were effective methods to analyze the characteristics of the NOx storage catalyst. NOx variation of the NOx storage catalyst in the lean air/fuel conditions according to temperature was dominated by NOx adsorption and desorption rather than catalytic reduction. The presence of reductants in the lean mixture promoted the NOx desorption at the $500^{\circ}C$ higher temperature. The temperatures for maximum NOx conversion with CH4 and $C_3H_6$ as a rich spike reductant appear around $500^{\circ}C\;and\; 400^{\circ}C$ respectively.

Influence of $TiO_2$ Thin Film Thickness and Humidity on Toluene Adsorption and Desorption Behavior of Nanoporous $TiO_2/SiO_2$ Prepared by Atomic Layer Deposition (ALD)

  • Sim, Chae-Won;Seo, Hyun-Ook;Kim, Kwang-Dae;Park, Eun-Ji;Kim, Young-Dok;Lim, Dong-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.268-268
    • /
    • 2012
  • Adsorption and desorption of toluene from bare and $TiO_2$-coated silica with a mean pore size of 15 nm was studied using breakthrough curves and temperature programmed desorption. Thicknesses of $TiO_2$ films prepared by atomic layer deposition on silica were < 2 nm, and ~ 5 nm, respectively. For toluene adsorption, both dry and humid conditions were used. $TiO_2$-thin film significantly improved toluene adsorption capacity of silica under dry condition, whereas desorption of toluene from the surface as a consequence of displacement by water vapor was more pronounced for $TiO_2$-coated samples with respect to the result of bare ones. In the TPD experiments, silica with a thinner $TiO_2$ film (thickness < 2 nm) showed the highest reactivity for toluene oxidation to $CO_2$ in the absence and presence of water. We show that the toluene adsorption and oxidation reactivity of silica can be controlled by varying thickness of $TiO_2$ thin films.

  • PDF

Effect of Temperature on the Adsorption and Desorption Characteristics of Methyl Iodide over TEDA-Impregnated Activated Carbon

  • Park, Geun-Il;Kim, In-Tae;Lee, Jae-Kwang;Ryu, Seung-Kon;Kim, Joo-Hyung
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.9-14
    • /
    • 2001
  • Adsorption and desorption characteristics of methyl iodide at high temperature conditions up to $250^{\circ}C$ by TEDA-impregnated activated carbon, which is used for radioiodine retention in nuclear facility, was experimentally evaluated. In the range of temperature from $30^{\circ}C$ to $250^{\circ}C$, the adsorption capacity of base activated carbon decreased sharply with increasing temperature but that of TEDA-impregnated activated carbon showed higher value even at high temperature ranges. Especially, the desorption amount of methyl iodide on TEDA-impregnated carbon represented lower value than that on unimpregnated carbon. The breakthrough curves of methyl iodide in the fixed bed packed with base carbon and TEDA-impregnated activated carbon at high temperature were compared. TEDA-impregnated activated carbon would be applicable to adsorption process up to $150^{\circ}C$ for the removal of radioiodine in a nuclear facility.

  • PDF

Studies on Ammonium Adsorption by and Desorption from Various Soils -II. Desorption of Ammonium (토양별(土壤別) 암모늄의 흡착(吸着)및 탈착(脫着)에 관한 연구 -II. 암모늄의 탈착(脫着))

  • Shim, Sang-Chil;Park, Hoon;Kim, Moo-Sung;Kim, Kwang-Rai
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.2
    • /
    • pp.75-80
    • /
    • 1979
  • Ammonium desorption from 16 soils treated with $(NH_4)_2HPO_4$ solution (2000 ppm $NH_4$) was investigated by seven extractions with 0.01M $CaCl_2$. 1. There were 2 to 4 steps alternately appeared with fast and slow mode. 2. Desorption equation, log y=b-ax where y is desorption amount, b a constant indicating adsorption maximum, a retention constant, and x extraction number, was held for each step. 3. Desorption rate (100${\times}$desorption / adsorption) was 65% for the average of 15 soils, maximum 87% in Gimcheon series, minimum 32% in Samgag series. Yongho series (a peat soil) showed 156% indicating the release of large quantity of indigenous soil ammonium. 4. Desorption rate was negatively correlated with initial adsorption and in this relation the tested soils were classified into 3 groups. 5. The cumulative desorption curve was approaching almost to maximum in all tested soils with seven extractions. The final retention amount, ranged from 25% of CEC (Gimhae series) to 502% (Samgag Series). 6. Amount and rate of desorption did not have any significant relation with Langmuir adsorption maxima of ammonium, CEC and contents of clay, available phosphorus and organic matter. 7. The above results may indicate that adsorption and desorption of ammonium is closely related with iron, aluminum silicate and adsorption and desorption characteristics of accompanied anions.

  • PDF