• Title/Summary/Keyword: Adsorption Tower

Search Result 27, Processing Time 0.03 seconds

Study on blood compatibility of diamond-like carbon and titanium nitride films (Diamond-like carbon 및 titanium nitride 박막의 혈액적합성 연구)

  • Yun Ju-Young;Bae Jin-Woo;Park Ki-Dong;Goo Hyun-Chul;Park Hyung-Dal;Chung Kwang-Wha
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.165-170
    • /
    • 2005
  • There is an increasing interest in developing novel coating to improve the blood compatibility of medical implants. Diamond-like carbon(DLC) and titanium nitride(TiN) films have been proposed as potential biomedical coatings due to their chemical k physical properties and moderate biocompatibility. To study the correlation between blood compatibility and physical properties of the films, the fibrinogen adsorption on the surface as well as morphology & wettability were investigated. The quantity of fibrinogen adsorption are Tower for TiN than DLC, which correlates with a higher hydrophilicity of TiN film. To reduce the quantity of fibrinogen adsorption on the film, plasma treatment and furnace annealing were performed, respectively. With the use of oxygen plasma and furnace annealing, the amount of fibrinogen adsorption on TiN film was remarkably reduced, while there was no decrease of the quantity with DLC.

Activated Carbon-Photocatalytic Hybrid System for the Treatment of the VOC in the Exhaust Gas from Painting Process (도장공정 배기가스 내 VOC 처리를 위한 활성탄-광촉매 복합시스템)

  • Lee, Chan;Cha, Sang-Won;Lee, Tae-Kyu
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.133-139
    • /
    • 2005
  • An activated carbon-photo catalysis hybrid system is proposed for the treatment of VOC produced from paint booth. and its VOC removal performance is experimentally evaluated. Activated carbon tower is designed on the basis of the adsorption characteristics of toluene. Photocatalytic system is designed as the series of $TiO_2/SiO\_2$ fluidized bed reactor and $TiO_2$-coated filters. The present activated carbon-photo catalysis hybrid system shows the VOC removal efficiency within $75\~100\%$ under different VOC species and concentrations.

Evaluation of Fugitive Emission Characteristics of Airborne Volatile Organic Compounds from Different Source Categories (발생원 유형에 따른 공기 중 휘발성 유기화합물의 비산배출 특성 평가)

  • 백성옥;김미현;서영교
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.363-376
    • /
    • 2003
  • In this study, the fugitive emission characteristics of airborne volatile organic compounds from different source categories were evaluated with respect to the concentrations measured in the vicinity of the sources. A total of 22 different sources were investigated, including gasoline storage and filling stations, painting spray booth, laundry, printing officer, textile industries, and a number of environmental sanitary facilities such as landfill, wastewater treatment and incineration plants. The target VOCs included 83 individual compounds, which were determined by adsorption sampling and thermal desorption coupled with GC/MS analysis. Overall, the aliphatic compounds appeared to be the most abundant class of compounds in terms of their concentrations, followed by aromatic, and halogenated hydrocarbons. As a single compound, however, toluene was the most abundant one, explaining 11% of the total VOC concentrations as an average of all the dataset. Among source categories, petroleum associated sources such as gasoline storage/filling stations, and laundry factory were identified as the most significant sources of aliphatic hydrocarbons, while aromatic VOCs were dominantly emitted from the sources handling organic solvents, such as painting booth, printing offices, and textile dyeing processes. However. there was no apparent pattern in terms of the contributions of eath group to the total VOCs concentrations in environmental sanitary facilities. It was also found that the activated carbon adsorption tower installed for the VOC emission control in some facilities do not show any effective performances, which may result in the increased VOC levels in the ambient atmosphere.

A Basic Study for Tasted and Odors Treatment and Optimum Chemical Feed in Existing Water Treatment Processes (기존 정수처리공정에서 이취미처리 및 최적 약품투입을 위한 기초연구)

  • Lim, Bong-Su;Bae, Byung-Uk;Jun, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.4
    • /
    • pp.94-102
    • /
    • 1996
  • This study was accomplished to get the basic data for the optimum chemical feed, evaluating interference between tastes and odors chemicals and coagulants in existing water treatment processes. During the tastes and odors occurs at D intaking tower area in 1995, PAC(Powdered Activated Carbon) feed with coagulants was PAC feed only and with coagulant simultaneously were appeared TON removal efficiency about 84%-87% within 20 min reaction time, but feed with time intervals was about 98% TON removal efficiency. Therefore in the case of PAC feed with coagulant, it is effective to feed coagulant on some time intervals in removing tastes and odors. It is not effective to feed PAC with chlorine dioxide($ClO_2$) or chlorine simultaneously in removing tastes and odors, because these chemicals were reduced the adsorption capacity of PAC.

  • PDF

Spent-GAC Regeneration Using Variable Frequency Sono-Fenton Oxidation (가변 주파수 Sono-Fenton 산화를 이용한 Spent-GAC 재생기술)

  • Joo, Soobin;Lee, Sangmin;Kim, Hyungjun;Shim, Intae;Kim, Heejin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.449-458
    • /
    • 2023
  • As an adsorption technology for dissolved organic matter, the adsorption capacity of granular activated carbon, GAC, can be applied, but activated carbon whose adsorption capacity is significantly reduced by use is inevitably replaced or regenerated. However, due to the economics of replacement cost, thermal regeneration method is used commercially, but high energy cost and loss of activated carbon occur under high temperature conditions above 800℃. In this study, the Sono-Fenton method, a multi-oxidation technology that combines Fenton oxidation and ultrasonic oxidation, was applied to improve the regeneration efficiency of spent GAC used to treat dissolved organic matter in combined sewer overflows (CSOs), and the regeneration efficiency of spent GAC by oxidant and ultrasonic frequency was investigated. In the applied Sono-Fenton treatment, the highest regeneration efficiency of 68.5% was obtained under the regeneration conditions of Fe2+ 10 mmol/L, H2O2 concentration 1,000 mmol/L, ultrasonic treatment time of 120 min, and ultrasonic frequency of 40 kHz. And similar efficiency was also obtained at 750 kHz, while ultrasonic waves of other frequencies had poor regeneration efficiency, and the magnitude of frequency and GAC regeneration efficiency did not show a linear relationship. In the case of continuous operation of the GAC adsorption tower with CSOs prepared by diluting raw sewage, about 700 hours of operation without regeneration was possible, and as a result of applying one Sono-Fenton treatment, 40-70% CODcr removal efficiency was obtained during a total of 1,000 hours of GAC adsorption operation.

Effect of K2CO3 Loading on the Adsorption Performance of Inorganic Adsorbent for H2S Removal (K2CO3 첨가에 따른 H2S 제거용 무기계 흡착제의 흡착성능 영향에 관한 연구)

  • Jang, Kil Nam;Song, Young Sang;Hong, Ji Sook;You, Young-Woo;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.286-293
    • /
    • 2017
  • The goal of this paper was to improve the performance of the adsorbent to remove $H_2S$. Pellet type adsorbents were prepared by using four kinds of materials ($Fe_2O_3$, $Ca(OH)_2$, Activated carbon, $Al(OH)_2)$ for use as a basic carrier. As the results of $H_2S$ adsorption tests, $Fe_2O_3$ and Activated Carbon improved the adsorption performance of $H_2S$ by 1.5 ~ 2 times, and $Ca(OH)_2$ and $Al(OH)_2$ showed no effect on $H_2S$ adsorption performance. Four basic materials were as carriers, and 5 wt% of KI, KOH and $K_2CO_3$ were added on the carriers, respectively. As the results of $H_2S$ adsorption tests, adsorbent containing $K_2CO_3$ showed the best performance. As a result of $H_2S$ adsorption test with varying $K_2CO_3$ content from 5 to 30 wt%, it was confirmed that adsorption performance was increased up to 20 wt% of $K_2CO_3$ and adsorption performance decreased to 30 wt%. The $H_2S$ adsorption performance was modeled by using Thomas model with varying $K_2CO_3$ contents and the results were used for the adsorption tower design. It was shown that the experimental values and the simulated values were in good agreement with the contents range of $K_2CO_3$ up to 20 wt%. Based on these results, it is expected that not only the adsorption performance of $H_2S$ adsorbent is improved but also life time of the adsorbent is increased.

Evaluation on the Locations of Powdered Activated Carbon Addition for Improvement of Taste and Odor Removal in Drinking Water Supplies (상수원수 내 이취미 제거효율 향상을 위한 분말활성탄 투입지점의 평가)

  • Kim, Young-Il;Lee, Sang-Jin;Bae, Byung-Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.341-348
    • /
    • 2007
  • The efficiency of powdered activated carbon (PAC) for removing taste and odor (T&O) in drinking water supplies is dependent on the contact time, quality of mixing, and the presence of competing compounds. All of these are strongly influenced by the stage in the treatment process at which the PAC is added. In conventional water treatment plants (WTPs), PAC is commonly added into the rapid mixing basin where chemicals such as coagulants, alkaline chemicals, and chlorine, are simultaneously applied. In order to prevent interference between PAC and other water treatment chemicals, alternative locations for addition of PAC, such as at transmission pipe in the water intake tower or into a separated PAC contactor, were investigated. Whatever the location, addition of PAC apart from other water treatment chemicals was more effective for geosmin removal than simultaneous addition. Among several combinations, the sequence 'chlorine-PAC-coagulant' produced the best result with respect to geosmin removal efficiency. Consequently, when PAC has to be applied to cope with T&O problems in conventional WTPs, it is very important to prevent interference with other water treatment chemicals, such as chlorine and coagulant. Adequate contact time should also be given for adsorption of the T&O compounds onto the PAC. To satisfy these conditions, installation of a separated PAC contactor would be the superior alternative if there is space available in the WTP. If necessary, PAC could be added at transmission pipe in the water intake tower and still provide some benefit for T&O treatment.

Development of Metal Oxide-based Photocatalyst Coated on Activated Carbon for Removing Volatile Organic Compounds (휘발성 유기화합물 저감을 위한 금속산화물 기반 광촉매-활성탄 복합체 개발)

  • Jae-Rak, Ko;Yewon, Jang;Ho Young, Jun;Hwan-Jin, Bae;Ju-Hyun, Lee;Chang-Ho, Choi
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.285-292
    • /
    • 2022
  • Adsorption tower systems based on activated carbon adsorption towers have mainly been employed to reduce the emission of volatile organic compounds (VOCs), a major cause of air pollution. However, the activated carbon currently used in these systems has a short lifespan and thus requires frequent replacement. An approach to overcome this shortcoming could be to develop metal oxide photocatalysis-activated carbon composites capable of degrading VOCs by simultaneously utilizing photocatalytic activation and powerful adsorption by activated carbon. TiO2 has primarily been used as a metal oxide photocatalyst, but it has low economic efficiency due to its high cost. In this study, ZnO particles were synthesized as a photocatalyst due to their relatively low cost. Silver nanoparticles (Ag NPs) were deposited on the ZnO surface to compensate for the photocatalytic deactivation that arises from the wide band gap of ZnO. A microfluidic process was used to synthesize ZnO particles and Ag NPs in separate reactors and the solutions were continuously supplied with a pack bed reactor loaded with activated carbon powder. This microfluidic-assisted pack bed reactor efficiently prepared a Ag-ZnO-activated carbon composite for VOC removal. Analysis confirmed that Ag-ZnO photocatalytic particles were successfully deposited on the surface of the activated carbon. Conducting a toluene gasbag test and adsorption breakpoint test demonstrated that the composite had a more efficient removal performance than pure activated carbon. The process proposed in this study efficiently produces photocatalysis-activated carbon composites and may offer the potential for scalable production of VOC removal composites.

Emission Reduction of Air Pollutants Produced from Chemical Plants

  • Lee, Byeong-Kyu;Cho, Sung-Woong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.E
    • /
    • pp.29-38
    • /
    • 1999
  • This study identified emission sources and emissions of air pollutants such as volatile organic compounds (VOCs), solvents, and acid gases produced from chemical plants. We collected air samples from various processes, reactors and facilities using VOC detectors and workers' experience. We identified chemical structures and emission concentrations of air pollutants. We analyzed total emissions of air pollutants emitted from the chemical plants. Also, we developed some emission reduction technologies based on chemical types and emission situations of the identified air pollutants. For reduction of air emissions of acid gases, we employed a method improving solubility of pollutants by reducing scrubber operation temperature, increasing surface area for effective contact of gas and liquid, and modifying or changing chemicals used in the acid scrubbers. In order to reduce air emissions of both amines and acid gases, which have had different emission sources each other but treated by one scrubber, we first could separate gas components. And then different control techniques based on components of pollutants were applied to the emission sources. That is, we first applied condensation and then acid scrubbing method using H2SO4 solution for amine treatment. However, we only used an acid scrubbing method using H2O and NaOH solution for acid gas treatment. In order to reduce air emissions of solvents such as dimethylformamide and toluene, we applied condensation and activated carbon adsorption. In order to reduce air emissions of mixture gases containing acid gases and slovents, which could not be separated in the processes, we employed a combination of various air pollution control devices. That is, the mixture gases were passed into the first condenser, the acid scrubber, the second condenser, and the activated carbon adsorption tower in sequence. In addition, for improvement of condensation efficiency of VOCs, we changed the type of the condensers attached in the reactors as a control device modification. Finally, we could successfully reduce air emissions of pollutants produced from various chenmical processes or facilities by use of proper control methods according to the types and specific emission situations of pollutants.

  • PDF

Characteristics of Cyclone and Electric Dust Collection Oil Filters for Selective Removal of Fiber Tenter Air Pollutants (섬유 텐터 대기오염물질의 선택적 제거를 위한 싸이클론 및 전기 집진 오일필터의 특성)

  • Jin Ho Jung;Seung Hwan Ryu;Soon Duk Kwon;Yoon Hyun Cho
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.256-273
    • /
    • 2023
  • Among the dyeing industries, the tenter process is a process that improves the quality of fibers by drying and ironing (heat treatment) dyed fabrics, and drugs such as water repellents, antistatic agents, and fiber softeners are mainly used in these tenter processes. These drugs are vaporized in the process of treatment by high temperatures (180 ~ 230℃), and are observed in a complex form such as white smoke, oil mist, and fine dust, causing odor. To treat the complex exhaust gas at the rear end of the tenter facility, most companies operate by installing a wet scrubber and an adsorption tower alone or in parallel, but there are many problems. In particular, the insoluble oil mist at the rear end of the tenter has significantly low processing efficiency in the cleaning dust collection facility, and there is a problem in the facility by adsorption due to the occlusion phenomenon caused by the oil mist. In addition, the odor gas at the rear end of the tenter contains a lot of aldehydes, and in order to improve these various problems, a complex exhaust purification device using cyclone and electric support collector was developed. This study examined the applicability of economical and efficient technology by removing complex air pollution at the rear end of the tenter and applying improved technology than the existing technology.