• Title/Summary/Keyword: Adsorption Rates

Search Result 240, Processing Time 0.027 seconds

Development of the Novel Dry and Wet Deposition Collector (새로운 건성 및 습성 침착 채취기의 개발)

  • 이병규;이채복
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.675-684
    • /
    • 2000
  • A novel dry and wet deposition collector, which can overcome the several problems such as water evaporation cartridge cracks and high costs founded in the previous collector systems, has been constructed. ENVI-18 SPE adsorption cartridge has been used to measure atmospheric deposition of polycylic aromatic hydrocarbons (PAHs). A surrogate surface, consisted of water and methanol, was filled in the dry deposition funnel to simulate dry deposition onto water surface. A water supply system in order to compensat evaporation of the surrogate surface was used and it was consisted of a piston pump, a tubing pump, a overflow tube and a chamber system. A novel water vaporizing system to supply water onto the wet SPE cartridge system with a constant flow rate was developed. The novel water vaporizing system, consisted of a vacuum pump, a water supply reserviour and tube and a mini space heater, could prevent the PAHs adsorption cartridge cracks occurred in the previous collector and effectively adsorb PAHs. The novel dry and wet deposition collector showed a good adsorption, desorption, and recovery rates of PAHs. By reducing the number of pumps used and employing polypyopylene (PP) instead of teflon as a material of collection funnel, the total construction costs were much reduced as compared with the previous dry and wet deposition collectors.

  • PDF

Effect of Relative Humidity on the Breakthrough of Charcoal Tubes during Mixed Organic Vapor Sampling (혼합 유기용제 포집시 습도가 활성탄관의 파과에 미치는 영향)

  • Yang, Hyeok Syng;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.125-137
    • /
    • 1996
  • This study was designed to investigate effects of relative humidity on the breakthrough of charcoal tubes at a fixed vapor concentration and sampling time during mixed organic vapor sampling. A vapor generator was used to generate three different concentrations of mixed organic vapor and a stainless steel chamber was fabricated and utilized to maintain three different percentages of relative humidity while maintaining a constant temperature. The results were as follows; 1. At high relative humidity, breakthrough of mixed organic vapor occurred quickly at low vapor concentration than at high vapor concentration because of the reduced adsorption volume of charcoal tube due to humidity. 2. Breakthrough by competitive adsorption of vapors onto charcoal tube was observed at first from n-hexane having the lowest boiling point and highest vapor pressure among the three organic vapors investigated, followed by TCE. No breakthrough was observed from toluene under all experimental conditions. 3. For n-hexane, breakthrough was observed after 2 hours of sampling and breakthrough rates were increased as relative humidity increased. For TCE, breakthrough was found after 3 hours of sampling and breakthrough rates by sampling time were increased as vapor concentration increased. 4. The adsorbed amount of mixed organic vapor at breakthrough was shown to have statistically significant correlations with sampling time, relative humidity, and vapor concentration in descending order of correlation. Relative humidity and sampling time for n-hexane and sampling time and concentration for TCE were both statistically significantly correlated. 5. Relative humidity was found to affect the amount of breakthrough of mixed organic vapor and n-hexane. Among three percentages of relative humidity investigated, the amount of breakthrough at 85 % relative humidity was significantly larger than those of at lower percentages of relative humidity. No statistically significant difference was found between 25 % and 55 % relative humidity. 6. The results of multiple regression analysis between breakthrough and relative humidity, vapor concentrations showed that the coefficient of determination of mixed organic vapor was 0.263 and those of n-hexane and TCE were 0.275 and 0.189, respectively. 7. Flow rates of sampling pumps used were found to be affected by relative humidity present. At 25 %, 55 %, and 85 % relative humidity, the relative errors of sampling pump were 1.4 %, 13.4 %, and 18.6 %, respectively. In conclusion, the results of this study showed that high relative humidity could reduce the adsorption volume of charcoal tubes and subsequently increase breakthrough rates. Therefore, to prevent breakthrough when sampling mixed organic vapors, it is suggested that either sampling volume be reduced on the flow rate be lowered so as to minimize breakthrough of the most volatile organic vapor in the mixture. In addition, since the flow rates of a sampling pump can be adversely affected by high relative humidity, it is recommended to use a constant flow mode pump when sampling in the highly humid environment.

  • PDF

Adsorption of Heavy Metal Ions onto Chemically Oxidized Ceiba pentandra (L.) Gaertn. (Kapok) Fibers

  • Chung, Byung-Yeoup;Cho, Jae-Young;Lee, Min-Hee;Wi, Seung-Gon;Kim, Jin-Hong;Kim, Jae-Sung;Kang, Phil-Hyun;Nho, Young-Chang
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.28-35
    • /
    • 2008
  • The physico-chemical properties of kapok fibers were altered via the combination processes of chlorite-periodate oxidation, in order to assess their efficacy as a heavy metal adsorbent. The chemically-oxidized kapok fibers were found to harbor a certain amount of polysaccharides, together with lowered lignin content. This alteration in lignin characteristics was clearly confirmed via FTIR and NBO yield. Moreover, chemically oxidized kapok fibers retained their hollow tube shape, although some changes were noted. The chemically oxidized kapok fibers evidenced elevated ability to adsorb heavy metal ions with the best fit for the Langmuir adsorption isotherm model. Three cycles of adsorption-desorption were conducted with in-between regeneration steps. Our experimental results indicated that chemically oxidized kapok fibers possessed excellent adsorption characteristics, and the modified kapok fibers could be completely regenerated with almost equimolar diluted sodium hydroxide. Pb, Cu, Cd and Zn ions evidenced adsorption rates of 93.55%, 91.83%, 89.75%, and 92.85% on the chemically oxidized kapok fibers. The regeneration efficiency showed 73.58% of Pb, 71.55% of Cu, 66.87% of Cd, and 75.00% of Zn for 3rd cycle with 0.0125N NaOH.

Removal of Ammonia Nitrogen, Manganese and Arsenic in The Ion Exchanged Natural Zeolite (이온 치환된 천연 제올라이트를 활용한 암모니아성 질소, Mn, As의 제거)

  • Lee, Kyung-Han;Kil, Bo-Min;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.237-245
    • /
    • 2019
  • Ammonia nitrogen is well known as a substance that causes the eutrophication with a phosphorus in the water, because it is contained in the industrial wastewater, agricultural and the stockbreeding wastewater. In addition, manganese (Mn) and arsenic (As) are included in the mine treated water, etc., and are known as a source of water pollution. Natural zeolites are used to remove ammonia nitrogen in water but it have a low adsorption capacity. In order to improve the low adsorption capacity of the natural zeolite, ion substitution was carried out with $Na^+$, $Ca^{2+}$, $K^+$ and $Mg^{2+}$. The adsorption capacity and removal rate of ammonia nitrogen ($NH_4-N$) were the highest at 0.66 mg/g and 89.8% in $Na^+$ ion exchanged zeolite. Adsorption experiments of Mn and As were performed using ion exchanged zeolites. Ion exchanged zeolite with $Mg^{2+}$ showed high adsorption capacity and removal rates of Mn and As.

An Estimation of Breakthrough Curve of Activated Carbon Adsorption Column (활성탄 흡착칼럼의 농도변화곡선 추정)

  • Yang, Ho-Yeon;Park, Chong-Mook;Song, Myung-Jae;Oh, Chang-Yong;Han, Neung-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.217-229
    • /
    • 2000
  • Adsorption equilibrium experiments for the phenol on granular activated carbon(16~25 mesh) and powder activated carbon(325 mesh) were carried out at $25{\pm}1^{\circ}C$ and the results were expressed with Freundlich isotherm. Adsorption rate experiments were executed in batch adsorption system under the condition that can be neglecting mass transfer resistance at the external surface of the particle. The results were analysed with the Miller's method to evaluate the linear driving force(LDF) adsorption rate constant. Fixed bed adsorption experiments were performed by adopting different flow rates in the activated carbon-phenol system at $25{\pm}1^{\circ}C$. The theoretical breakthrough curves were estimated with the simple constant pattern solution. The adsorption rate constant of LDF model was not a fixed value but variable with adsorption amount. The experimental results were better agreed with the estimation of breakthrough curve using the variable adsorption rate constant than the results estimated using the average fixed adsorption rate constant.

  • PDF

Determination of Adsorption Isotherms of Hydroxide ata Platinum Electrode Interface Using the Phase-Shift Method and Correlation Constants

  • Chun, Jin-Y.;Chun, Jang-H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.219-228
    • /
    • 2007
  • The phase-shift method and correlation constants, i.e., the electrochemical impedance spectroscopy (EIS) techniques for studying linear relationships between the behaviors (${\varphi}\;vs.\;E$) of the phase shift ($0^{\circ}{\leq}-{\varphi}{\leq}90^{\circ}$) for the optimum intermediate frequency and those (${\theta}\;vs.\;E$) of the fractional surface coverage ($1{\geq}{\theta}{\geq}0$), have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms (${\theta}\;vs.\;E$) of H for the cathodic $H_2$ evolution reaction (HER) at noble and transition-metal/aqueous solution interfaces. At the Pt/0.1 MKOH aqueous solution interface, the Langmuir, Frumkin, and Temkin adsorption isotherms (${\theta}\;vs.\;E$), equilibrium constants ($K=5.6{\times}10^{-10}\;mol^{-1}\;at\;0{\leq}{\theta}<0.81$, $K=5.6{\times}10^{-9}{\exp}(-4.6{\theta})\;mol^{-1}\;at\;0.2<{\theta}<0.8$, and $K=5.6{\times}10^{-10}{\exp}(-12{\theta})\;mol^{-1}\;at\;0.919<{\theta}{\leq}1$, interaction parameters (g = 4.6 for the Temkin and g = 12 for the Frumkin adsorption isotherm), rates of change of the standard free energy ($r=11.4\;kJ\;mol^{-1}$ for g=4.6 and $r=29.8\;kJ\;mol^{-1}$ for g=12), and standard free energies (${\Delta}G_{ads}^0=52.8\;kJ\;mol^{-1}\;at\;0{\leq}{\theta}<0.81,\;49.4<{\Delta}G_{\theta}^0<56.2\;kJ\;mol^{-1}\;at\;0.2<{\theta}<0.8$ and $80.1<{\Delta}_{\theta}^0{\leq}82.5\;kJ\;mol^{-1}\;at\;0.919<{\theta}{\leq}1$) of OH for the anodic $O_2$ evolution reaction (OER) are also determined using the phase-shift method and correlation constants. The adsorption of OH transits from the Langmuir to the Frumkin adsorption isotherm (${\theta}\;vs.E$), and vice versa, depending on the electrode potential (E) or the fractional surface coverage (${\theta}$). At the intermediate values of ${\theta}$, i.e., $0.2<{\theta}<0.8$, the Temkin adsorption isotherm (${\theta}\;vs.\;E$) correlating with the Langmuir or the Frumkin adsorption isotherm (${\theta}\;vs.\;E$), and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are accurate and reliable techniques to determine the adsorption isotherms and related electrode kinetic and thermodynamic parameters. They are useful and effective ways to study the adsorptions of intermediates (H, OH) for the sequential reactions (HER, OER) at the interfaces.

A Study on the Adsorption of Heavy Metals by Chitosan Obtained from Shrimp Shell (새우껍질로부터 얻어진 키토산을 이용한 중금속 흡착에 관한 연구)

  • Cha, Wool-Suk;Kim, Jong-Soo;Cho, Bae-Sick;Kim, Chong-Kyun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.504-508
    • /
    • 1998
  • Experimental investigation on the adsorption of heavy metal confounds as $Fe^{2+}$, $Cu^{2+}$, $Mn^{2+}$, $Zn^{2+}$, $Ni^{2+}$, $Pb^{2+}$, $Cd^{2+}$, $Cr^{6+}$ using chitosan was carried out. The adsorption of each component of heavy metal compounds was measured by Atomic Absorption apparatus. The range of optimum pH for the removal rates of heavy metal compounds was found pH 7.0~9.0. The maximum time for the removal rate of $Fe^{2+}$ was observed about 15 min. The maximum time for the removal raters of $Cu^{2+}$, $Mn^{2+}$, $Zn^{2+}$, $Ni^{2+}$, $Pb^{2+}$, $Cd^{2+}$, and $Cr^{6+}$ was observed about 25 min. The adsorption rates of heavy metal compounds by chitosan have been found in the order of $Fe^{2+}>Cu^{2+}>Mn^{2+}>Zn^{2+}>Ni^{2+}>Pb^{2+}>Cd^{2+}>Cr^{6+}$.

  • PDF

Dyeing Properties and Antimicrobial Activity of Soybean Fiber with Gromwell Colorants (대두섬유에 대한 자초색소의 염색성 및 항균성)

  • Choi, Hee;Shin, Youn-Sook;Choi, Chang-Nam;Kim, Sang-Yool;Chung, Yong-Sik
    • Fashion & Textile Research Journal
    • /
    • v.9 no.1
    • /
    • pp.119-123
    • /
    • 2007
  • Dyeing properties of soybean fabrics on gromwell colorants were studied for the effect of dyeing conditions, such as colorants concentration, temperature, time and pH on the dye uptake and effect of mordants on color change, dye uptake and various colorfastness. Antimicrobial activity of soybean fabrics dyed and sim-mordanted with gromwell colorants was examined by shake flask method. Gromwell colorants showed considerably affinity to soybean fabric and its isotherm adsorption curve was Freundlich type. Therefore, it is considered that hydrogen bonding and Van der Waals force were involved in the adsorption of gromwell colorants to soybean fabric. Soybean fabrics showed R color on Al, Cu and Sn mordant, RP color on Cr and Fe mordant, but soybean fabrics showed low dye uptake depending on mordanting treatment. Light colorfastness was increased for Cr and Fe mordants. Staphylococcus aureus reduction rates were above 90% for Cr and Cu mordanted soybean fabrics, and the others were poor. Klebsiella pneumoniae reduction rates soybean fabrics did not show reduction rate hardly.

Chemical Indices of Soil Quality: Effects of Heavy Metal Additions

  • Yang, Jae-E.;Choi, Moon-Heon;Lee, Wi-Young;Kim, Jeong-Je;Jung, Yeong-Sang
    • Applied Biological Chemistry
    • /
    • v.41 no.8
    • /
    • pp.587-594
    • /
    • 1998
  • The objective of this research was to characterize effects of Cu or Cd additions on chemistry of soil quality indices, such as pH, EC, cation distribution and buffering capacity. Metals were added at rates ranging from 0 to 400 mg $kg^{-1}$ of soil. Soil solution was sequentially extracted from saturated pastes using vacuum. Concentrations of Cu or Cd remaining in soil solutions were very low as compared to those added to the soils, warranting that most of the added metals were recovered as nonavailable fractions. Adsorption of the added metals released cations into soil solution causing increases of ionic strength of soil solution. At metal additions of $200{\sim}400\;mg\;kg^{-1}$, EC of soil solution increased to as much as $2{\sim}4\;m^{-1}$; salinity levels considered high enough to cause detrimental effects on plant production. More divalent cations than monovalent cations were exchanged by Cu or Cd adsorption. The nutrient buffering capacity of soils was decreased due to the metal adsorption and release of cations. pH of soil solution decreased linearly with increasing metal loading rates, with a decrement of up to 1.3 units at 400 mg Cu $kg^{-1}$ addition. Influences of Cu on each of these soil quality parameters were consistently greater than those of Cd. These effects were of a detrimental nature and large enough in most cases to significantly impact soil productivity. It is clear that new protocols are needed for evaluating potential effects of heavy metal loading of soils.

  • PDF

A Study on the Relationship between the Pore Volume Distributions of Some Adsorbents Including Charcoal and the Rates of Adsorption of a Number of Cigarette Aerosol Ingredients such as Tar, Nicotine and etc. (활성탄을 포함하는 몇 가지 흡착제의 동공부피 분포와 이들의 흡착제에 대한 타르, 유기산 등 연초 에어로솔 성분의 흡착률과의 관련성)

  • Ick Kyun Kang;Sang Hyun Han;Yong Kwon Kim;Eun Hee Cha
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.350-356
    • /
    • 1989
  • The analysis of adsortion behaviors of some cigarett aerosol ingredients such as tar, nicotine, carbon monoxide and a number of organic acids has shown that the rates of adsorption of the adsorbates of lower boiling point had increased in accordance with increasing cumulative pore volume, while that of higher doiling point decreased with increasing pore volume of smaller radius. The adsorbents used here were charcoal, silica gel, alumina, and activated clay. The common principle that the adsorbents of greater specific surface area adsorb the larger amount of adsorbates appeared to be disturbed in the adsortion of higher boiling point adsorbates. This confirmation was made mainly by analyzing the adsorption behaviors with regard to the pore volume distributions evaluated on the bases of desorption isotherms.

  • PDF