• Title/Summary/Keyword: Adsorption Characteristics

Search Result 1,439, Processing Time 0.028 seconds

Microwave-Syntheses of Zeolitic Imidazolate Framework Material, ZIF-8 (마이크로파에 의한 Zeolitic Imidazolate Framework 물질, ZIF-8의 합성)

  • Park, Jung-Hwa;Park, Seon-Hye;Jhung, Sung-Hwa
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.553-559
    • /
    • 2009
  • One of zeolitic imidazolate framework materials (ZIF), ZIF-8, has been synthesized with microwave irradiation and conventional electric heating at $140{\sim}180^{\circ}C}$. ZIFs are porous crystalline materials and are similar to metal organic framework (MOF) materials because both ZIFs and MOFs are composed of both organic and metallic components. ZIFs are very stable and similar to zeolites because ZIFs have tetrahedral networks. ZIF-8, with a decreased crystal size, can be synthesized rapidly with microwave irradiation. The microwave synthesis of ZIF-8 is completed in 4 h at $140{^{\circ}C}$ and the reaction time is decreased by about 5 times compared with the conventional electric heating. The ZIF-8 obtained by microwave heating has larger surface area and micropore volume compared with the ZIF-8 synthesized with conventional electric heating. It can be confirmed that ZIF-8s show type-I adsorption isotherms, explaining the microporosity of the ZIF-8s. Based on FTIR and TGA results, it can be understood that the ZIF-8s have similar bonding and thermal characteristics irrespective of heating methods such as microwave and conventional heating.

Separation Characteristics of Mandelic Acid in Kromasil HPLC Column (Kromasil HPLC 칼럼에서 Mandelic Acid의 분리특성)

  • Kim, Byung Lip;Kim, Jong Min;Kim, Woo Sik;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.681-685
    • /
    • 2008
  • Chiral separation of racemic mandelic acid was achieved on a Kromasil KR100-5CHI-TBB column. Some chromatographic parameters (resolution, number of theoretical plates, capacity factor) are calculated under different separation conditions such as changes of mobile phase compositions (hexane/t-BME = 85/15 - 10/90) as well as formic acid concentrations for adjusting pH (0.1, 0.5, 1.0 v/v%). Flow rate versus number of theoretical plates was compared to evaluate column efficiency. To determine the adsorption isotherms, PIM (Pulse Input Method) was carried out. At the concentrations of racemic mandelic acid between 0.1 and 0.3 mg/ml, L- and D-mandelic acids have the same retention times of 8.8 and 9.4 min respectively. Mandelic acid isotherms show a linear form under the concentrations of 0.3 mg/ml with eluent (hexane/t-BME = 75/25). As the concentrations of mandelic acids increase, nonlinear Langmuir isotherms were observed as $C_{S,L}=3.358C_{M,L}/(1+0.0897C_{M,L})$ for L-mandelic acid and, $C_{S,D}=3.692C_{M,D}/(1+0.1457C_{M,D})$ for D-mandelic acid.

Characteristics of PM10, PM2.5 and CO2 Concentration in Public Transportations and Development of Control Technology (대중교통수단에서 PM10, PM2.5 및 CO2의 농도 현황과 저감기술 개발에 관한 연구)

  • Park, Duck Shin;Kwon, Soon Bark;Cho, Young Min;Jang, Seong Ki;Jeon, Jae Sik;Park, Eun Young
    • Particle and aerosol research
    • /
    • v.6 no.1
    • /
    • pp.9-20
    • /
    • 2010
  • This study examined the concentration level of the major air pollutants in public transportation. The study was conducted between February 2009 and March 2008 at Suwon-Yeosu line in Korea. $PM_{10}$ concentration level was $100{\mu}g/m^3$ on average. The $PM_{2.5}$ to PM10 ratio in transport is 0.37, which was lower than the results published by other researches. The result also demonstrated that outdoor $PM_{10}$ concentration was about 56~60% level compared to that of the cabin. $CO_2$ concentration level in the cabin was 1,359ppm, which does not exceed 2,000ppm, which is the guideline concentration level according to the Ministry of Environment. $CO_2$ concentration level in the cabin was $CO_2=23.4{\times}N+460.2$, and about 23.4ppm in $CO_2$ concentration level increased every time one passenger was added on. The experiment conducted on the train demonstrated that the average $PM_{10}$ concentration level was $100{\mu}g/m^3$ in case of the reference cabin while average $PM_{10}$ concentration level of the modified vehicle was $68{\mu}g/m^3$. Likewise, effect of the particle reduction device for the reduction of $PM_{10}$ concentration level was approximately 21%. Meanwhile there was almost no difference in the concentration level between reference and modified cabin in case of $PM_{2.5}$. Using zeolite as an adsorbent was made to reduce the $CO_2$ concentration level in the cabin. Number of passengers was factored in, to calculate the effect of the adsorption device, which demonstrated that about 36% of $CO_2$ concentration level was reduced in the modified cabin effect of the $CO_2$ reduction device. This research analyzed the current status concerning the quality of air in the public transportation and technologies were developed that reduces major air pollutants.

Electrochemical Behavior of Dissolved Hydrogen and Hydrogen Peroxide in Boric Acid Solution at the Elevated Temperature (붕산수용액 매질에서 용존수소와 과산화수소의 고온 전기화학 거동연구)

  • Yeon Jei-Won;Woo Seung-Kyun;Choi Young-Ku;Jung Yongju;Kim Won-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.21-25
    • /
    • 2004
  • The electrochemical behaviors of dissolved hydrogen and hydrogen peroxide at a platinum disk electrode were investigated in boric acid solution by potentiostatic polarization method at the temperature of 25 and $200^{\circ}C$. The oxidation of dissolved hydrogen at $25^{\circ}C$ was kinetically controlled reaction, the rate of which depends upon the electron transfer on the electrode surface. As temperature was raised, however, the electrochemical characteristics of dissolved hydrogen were changed from a kinetically controlled reaction to a diffusion controlled one. One notable feature, with dissolved hydrogen at high temperature, is that an abnormal potential range was observed, where the oxidation rate of dissolved hydrogen rapidly decreased just before starting potential of water oxidation. We think it is caused by the deactivation of the electrode that results from the adsorption of hydroxyl ion on the surface of the platinum disk. On the contrary, a definite change with temperature was not identified in the case of the hydrogen peroxide except for the increase in current density that was due to the increasing diffusion coefcient with an increase of temperature.

Modelling of Nitrogen Oxidation in Aerated Biofilter Process with ASM3 (부상여재반응기에서 ASM3를 이용한 질산화 공정 모사)

  • Jun, Byonghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.19-25
    • /
    • 2007
  • Process analysis with ASM3 (Activated Sludge Model3) was performed to offer basic data for the optimization of aerated biofilter (ABF) process design and operation. This study was focused on the simulation of the nitrification reaction in ABF which was a part of the advanced nutrient treatment process using bio-adsorption. The ABF process has been developed for the removal of suspended solids and nitrification reaction in sewage. A GPS-X (General Purpose Simualtor-X) was used for the sensitivity analysis and operation assessment. Sensitivity of ASM3 parameters on ABF was analysed and 4 major parameters ($Y_A$, $k_{sto}$, ${\mu}_A$, $K_{A,HN}$) were determined by dynamic simulation using 70 days data from pilot plant operation. The optimized values were 0.14 for $Y_A$, 3.5/d for $k_{sto}$, 2.7/d for ${\mu}_A$ and 1.1 mg/L for $K_{A,HN}$, respectively. Simulation with optimized parameter values were conducted and TN, $NH_4{^+}-N$ and $NO_3{^-}-N$ concentrations were estimated and compared with measured data at the range of 10 min to 4 hrs of hydraulic retention time (HRT). The simulated results showed that optimized parameter values could represent the characteristics of ABF process. Especially, the ABF showed relatively high nitrification rate (60%) under very short HRT of 10 min. As a consequence, the ABF was thought to be successfully used in the site which having high variation of influent loading rate.

  • PDF

Characteristics of Heavy Metal Resistant Plasmid in Enterobacter cloaceae K41 (Enterobacter cloaceae K41 plasmid의 중금속 저항성)

  • Kim Young-Hee;Lee Sang-Jun;Jeong Yong-Kee;Chung Kyung-Tae
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.566-571
    • /
    • 2005
  • A natural habitat bacterium, Enterobacter cloaceae K41 was isolated from fresh water plant root and identified. This strain was used to investigate heavy metal resistance. The optimal growth conditions of the bacterium were LB medium containing$1\%$ yeast extract, $1\%$ lactose, $1\%$ NaCl, pH 7.0, at $37^{\circ}C$, and for 24 hours on a shaker. The minimal inhibitory concentration (MIC) of heavy metals against E. cloaceae KCTC2519 and E. cloaceae K41 was compared. The MIC of E. cloaceae K41 was 150 ppm in Cu, 50 ppm in Cd whereas that of the standard strain was 50 ppm in Cu but no growth was observed either Cd or two mixed heavy metal solution. The presence of plasmid was cleared from the isolated strain whereas no possession from the standard strain. The plasmid from E. cloaceae K41 was transformed into E. coli $DH5{\alpha}$. The MIC of transformed strain increased resistance 7 times in Cu and 6 times in Cd by insertion of this plasmid. The metal adsorption of the transformant was increased 1.3 times in Cu and 1.5 times in Cd indicating the plasmid was responsible for heavy metal resistance.

Preparation and Characterization of Cu/MCM-41 Mesoporous Catalysts for NO Removal (Cu/MCM-41 메조포러스 촉매 제조 및 NO 제거 특성)

  • Park, Soo-Jin;Cho, Mi-Hwa;Kim, Seok;Kwon, Soo-Han
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.737-741
    • /
    • 2005
  • In this study, the effect of copper content on the NO removal efficiency by Cu/MCM-41 has been investigated. MCM-41 was prepared by hydrothermal synthesis using a gel mixture of colloidal silica solution and cetyltrimethylammonium. Cu/MCM-41 was manufactured with copper content (5, 10, 20, and 40%) in Cu(II) acetylacetonate. The surface properties of MCM-41 were investigated by using pH, XRD, and FT-IR analyses. $N_2/77K$ adsorption isotherm characteristics, including the specific surface area and micropore volume were studied by BET's equation and Boer's t-plot methods. NO removal efficiency was confirmed by gas chromatography technique. From the experimental results, the MCM-41 was analyzed to have the surface functional groups of Si-OH and Si-O-Si and the characteristic diffraction lines (100), (110), (200), and (210) corresponding to a hexagonal arrangement structure. The copper content supported on MCM-41 appeared to increase the NO removal efficiency in spite of decreasing the specific surface areas or micropore volumes. Consequently, it was found that the copper content in Cu/MCM-41 played an important role in improving the NO removal efficiency, which was mainly attributed to the catalytic reactions.

A Study of Marine Response system for the tar type waste oil (타르성 기름찌꺼기 해상방제 방안에 관한 연구)

  • Jang, Duck-Jong;Kim, Tae-Ho;Yang, Kyung-Uk;Na, Sun-Cheol;Nam, Kwang-Hee
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.117-120
    • /
    • 2008
  • As we can see at the oil spill occident on the coast of Taean, the viscosity of the spilled oil becomes thicker as time goes by. It becomes waste oil with the form of tar. It moves to other areas following a tide. When the temperature of the water goes up, the viscosity becomes lighter and forms oil film. It repeats the process spreading to and polluting extensive areas where the tide reaches. People have used hand nets to collect waste oil of tar at the sea. But it is very difficult for them to collect the tar type waste oil spread on large areas before it reaches to the beach. This paper tried to find a way to collect the tar type waste oil efficiently. It used absorption mat of boom type that uses the attachment characteristics of the tar type waste oil and floating waste recovery device of net type. It tested the possibility of using the devices at the oil spill accident on the beach of Taean. The result showed that net type recovery device was much more efficient in collecting the waste oil in short time than the hand net system of people. It confirmed that the net type recovery device could be used to collect tar type waste oil.

  • PDF

A Study of the Removal Characteristics of Heavy Metal(loid)s using by Product from NoMix Toilet and its Characterization (NoMix toilet 에서 발생하는 부산물을 이용한 수용액내 (준)중금속 제거 특성 및 가능성 연구)

  • Shim, Jaehong;Lim, Jeong-Muk;Kim, Jin-Won;Kim, Hae-Won;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.28-39
    • /
    • 2016
  • Struvite (MgNH4PO4 ⋅ 6H2O) and hydroxyapatite (HAP, Ca10(PO4)6(OH)2) precipitation in urine-separating toilets (NoMix toilets) causes severe maintenance problems and also reduce the phosphate and calcium content. Application of urine separating technique and extraction of by-products from human urine is a cost effective technique in waste water treatment. In this study, we extract urine calcite from human urine by batch scale method, using urease producing microbes to trigger the precipitation and calcite formation process. Extracted urine calcite (calcining at 800℃) is a potential adsorbent for removal of heavy metal(loid)s like (Cd2+, Cu2+, Ni2+, Pb2+, Zn2+ and As3+) along with additional leaching analysis of total nitrogen (T-N), phosphate (T-P) and chemical oxygen demand (COD). The transformations of calcite during synthesis were confirm by characterization using XRD, SEM-EDAX and FT-IR techniques. In additional, the phosphate leaching potential and adsorbate (nitrate) efficiency in aqueous solution was investigated using the calcinedurine calcite. The results indicate that the calcite was effectively remove heavy metal(loid)s lead up to 96.8%. In addition, the adsorption capacity (qe) of calcite was calculated and it was found to be 203.64 Pb, 110.96 Cd, 96.02 Zn, 104.2 As, 149.54 Cu and 162.68 Ni mg/g, respectively. Hence, we suggest that the calcite obtain from the human urine will be a suitable absorbent for heavy metal(loid)s removal from aqueous solution.

Production of Bio-Carbon from Unused Biomass through CO2 Activation: Removal Characteristics of Formaldehyde and Acetaldehyde (미이용 바이오매스의 이산화탄소 활성화를 통한 바이오카본 생산: 포름알데하이드 및 아세트알데하이드 제거 특성)

  • Kim, JongSu;Choi, SeukCheun;Lee, Uendo;Park, EunSeuk;Jeong, Soohwa
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.325-331
    • /
    • 2021
  • In this study, bio-carbons were produced by activation process from unused biomass (Grade 3 wood pellet and spent coffee grounds) to determine the removal performance of formaldehyde and acetaldehyde. The activation experiments were conducted in a fixed bed reactor using CO2 as an activation agent. The temperature of the activation reactor and input of CO2 were 900 ℃ and 1 L min-1 for all the experiments. The maximum BET surface area of about 788 m2 g-1 was obtained for bio-carbon produced from Grade 1 wood pellet, whereas about 544 m2 g-1 was achieved with bio-carbon produced from spent coffee grounds. In all the experiments, the bio-carbons produced were mainly found to have micro-porous nature. A lower ash amount in raw material was favored for the high surface area of bio-carbons. In the removal test of formaldehyde and acetaldehyde, the bio-carbon produced from spent coffee grounds showed excellent adsorption performance compared with woody biomass (Grade 1 wood pellet and Grade 3 wood pellet). In addition, the comparative experiment of commercial impregnated activated carbon and bio-carbon produced from spent coffee grounds was conducted. In terms of formaldehyde removal performance, the commercial impregnated bio-carbon was excellent, while bio-carbon produced from spent coffee grounds was excellent in acetaldehyde removal.