• Title/Summary/Keyword: Adsorption

Search Result 6,158, Processing Time 0.049 seconds

Leaching and mobility prediction of butachlor, ethoprophos, iprobenfos, isoprothiolane and procymidone in soils (Butachlor, ethoprophos, iprobenfos, isoprothiolane 및 procymidone의 토양 중 용탈과 이동성 예측)

  • Kim, Chan-Sub;Park, Kyung-Hun;Kim, Jin-Bae;Choi, Ju-Hyeon
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.300-308
    • /
    • 2002
  • This study was conducted to investigate the downward mobility of pesticides using soil colunms and to compare the experimental results with predicted values from Convective mobility test model. Five pesticides including ethoprophos, procymidone, iprobenfos, isoprothiolane, and butachlor were subjected to soil column leaching test for three types of cultivation soils. The concentrations of ethoprophos, iprobenfos, procymidone, isoprothiolane and butachlor leached from soil column of 30 cm depth ranged $0.74{\sim}3.61mg/mL,\;0.36{\sim}1.67mg/L,\;0.16{\sim}0.84mg/L,\;0.16{\sim}0.67mg/L$ and lower than 0.15 mg/L, respectively. Elution volume to reach the peak of ethoprophos, iprobenfos, procymidone, isoprothiolane and butachlor in the leachate ranged $2{\sim}4PV,\;3{\sim}10PV,\;5{\sim}13PV,\;4{\sim}14PV\;and\;19{\sim}61PV$, respectively. Convection times predicted by Convective mobility test model at standard conditions were $9{\sim}18$ days for ethoprophos, $17{\sim}35$ days for iprobenfos, $24{\sim}54$ days for isoprothiolane, $21{\sim}65$ days for procymidone and $105{\sim}279$ days for butachlor. Based on these convection times, ethoprophos was classified as mobile or most mobile, isoprothiolane and procymidone as moderately mobile or mobile and butachlor as slightly mobile. On the same conditions, convection times from the model were coincided with those from soil column test in most of the soil-pesticide combinations applied. Therefore, Convective mobility test model could be applied to predict convection times of pesticides.

Stabilization of As (arsenic(V) or roxarsone) Contaminated Soils using Zerovalent Iron and Basic Oxygen Furnace Slag (영가철(Zerovalent Iron)과 제강슬래그를 이용한 비소(V) 및 록살슨(Roxarsone) 오염토양의 비소 안정화 효율 평가)

  • Lim, Jung-Eun;Kim, Kwon-Rae;Lee, Sang-Soo;Kwon, Oh-Kyung;Yang, Jae-E;Ok, Yong-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.631-638
    • /
    • 2010
  • The objective of this study was to evaluate the efficiency of zerovalent iron and basic oxygen furnace slag on arsenic stabilization in soils. For this, arsenic (V) contaminated soil and roxarsone contaminated soil were incubated after incorporation with zerovalent iron (ZVI) or basic oxygen furnace slage (BOFS) at four different levels (0%, 1%, 3%, and 5%) for 30 days and then the residual concentrations of arsenic were analysed following extraction with aqua reqia, 1N HCl and 0.01 M $CaCl_2$. The total concentration of arsenic was 2,285 mg/kg in the As(V) contaminated soil and 6.5 mg/kg in the roxarsone contaminated soil. 1 N HCl extractable arsenic concentration in the As(V) contaminated soil was initially 1,351 mg/kg and this was significantly declined by 713~1,034 mg/kg following incubation with ZVI while BOFS treatment showed no effect on the stabilization of inorganic arsenate except 5% treatment which showed around 100 mg/kg reduction in 1N HCl extractable arsenic. Similarly, in the roxarsone contaminated soil 1N HCl extractable concentration of arsenic was reduced from 3.13 mg/kg to 0.69 mg/kg with ZVI treatment increased from 1% to 5% while BOFS treatment did not lead to any statistically significant reduction. Available (0.01M $CaCl_2$ extractable) arsenic was initially 0.85 mg/kg in the As(V) contaminated soil and this declined by 0.79 mg/kg following incorporation with 5% ZVI, which accounted for more than 90% of the available As in the control. When As(V)-contaminated soil was treated with BOFS, the available arsenic was increased due to competing effect of the phosphate originated from BOFS with arsenate for the adsorption sites. For the roxarsone contaminated soil, the greater the treatment of ZVI or BOFS, the lower the available arsenic concentration although it was still higher than that of the control.

A Study of Burcucumber Biochars to Remediate Soil Pb Considering GWP (Global Warming Potential) (GWP (Global Warming Potential)를 고려한 가시박 바이오차르의 토양 납 제거 효과 분석)

  • Kim, You Jin;Park, Han;Kim, Min-Ho;Seo, Sung Hee;Ok, Yong Sik;Yoo, Gayoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.7
    • /
    • pp.432-440
    • /
    • 2015
  • Biochar, a by-product from pyrolysis of biomass, is a promising option to mitigate climate change by increasing soil carbon sequestration. This material is also considered to have potential to remediate a soil with heavy metal pollution by increasing the soil's adsorptive capacity. This study conducted the assessment of two biochars considering the climate change mitigation potential and heavy metal removal capacity at the same time. Two kinds of biochars (BC_Ch, TW_Ch) were prepared by pyrolyzing the biomass of burcucumber (BC_Bm) and tea waste (TW_Bm). The soils polluted with Pb were mixed with biochars or biomass and incubated for 60 d. During the incubation, $CO_2$, $CH_4$, and $N_2O$ were regularly measured and the soil before and after incubation was analyzed for chemical and biological parameters including the acetate extractable Pb. The results showed that only the BC_Ch treatment significantly reduced the amount of Pb after 60 d incubation. During the incubation, the $CO_2$ and $N_2O$ emissions from the BC_Ch and TW_Ch were decreased by 24% and 34% compared to the BC_Bm and TW_Bm, respectively. The $CH_4$ emissions were not significantly affected by biochar treatments. We calculated the GWP considering the production of amendment materials, application to the soils, removal of Pb, and soil carbon storage. The BC_Ch treatment had the most negative value because it had the higher Pb adsorption and soil carbon sequestration. Our results imply that if we apply biochar made from burcucumber, we could expect the pollution reduction and climate change mitigation at the same time.

Heterogeneous Oxidation of Liquid-phase TCE over $CoO_x/TiO_2$ Catalysts (액상 TCE 제거반응을 위한 $CoO_x/TiO_2$ 촉매)

  • Kim, Moon-Hyeon;Choo, Kwang-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.253-261
    • /
    • 2005
  • Catalytic wet oxidation of ppm levels of trichloroethylene (TCE) in water has been conducted using $TiO_2$-supported cobalt oxides at a given temperature and weight hourly space velocity. 5% $CoO_x/TiO_2$ might be the most promising catalyst for the wet oxidation at $36^{\circ}C$ although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Characterization of the $CoO_x$ catalyst by acquiring XPS spectra of both fresh and used Co surfaces gave different surface spectral features of each $CoO_x$. Co $2p_{3/2}$ binding energy of Co species exposed predominantly onto the outermost surface of the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $Co_2TiO_4$ and $CoTiO_3$. The spent catalyst possessed a 780.3 eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD measurements indicated that the phase structure of Co species in 5% $CoO_x/TiO_2$ catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.

Human Health Risk, Environmental and Economic Assessment Based on Multimedia Fugacity Model for Determination of Best Available Technology (BAT) for VOC Reduction in Industrial Complex (산업단지 VOC 저감 최적가용기법(BAT) 선정을 위한 다매체 거동모델 기반 인체위해성·환경성·경제성 평가)

  • Kim, Yelin;Rhee, Gahee;Heo, Sungku;Nam, Kijeon;Li, Qian;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.325-345
    • /
    • 2020
  • Determination of Best available technology (BAT) was suggested to reduce volatile organic compounds (VOCs) in a petrochemical industrial complex, by conducting human health risk, environmental, and economic assessment based on multimedia fugacity model. Fate and distribution of benzene, toluene, ethylbenzene, and xylene (BTEX) was predicted by the multimedia fugacity model, which represent VOCs emitted from the industrial complex in U-city. Media-integrated human health risk assessment and sensitivity analysis were conducted to predict the human health risk of BTEX and identify the critical variable which has adverse effects on human health. Besides, the environmental and economic assessment was conducted to determine the BAT for VOCs reduction. It is concluded that BTEX highly remained in soil media (60%, 61%, 64% and 63%), and xylene has remained as the highest proportion of BTEX in each environment media. From the candidates of BAT, the absorption was excluded due to its high human health risk. Moreover, it is identified that the half-life and exposure coefficient of each exposure route are highly correlated with human health risk by sensitivity analysis. In last, considering environmental and economic assessment, the regenerative thermal oxidation, the regenerative catalytic oxidation, the bio-filtration, the UV oxidation, and the activated carbon adsorption were determined as BAT for reducing VOCs in the petrochemical industrial complex. The suggested BAT determination methodology based on the media-integrated approach can contribute to the application of BAT into the workplace to efficiently manage the discharge facilities and operate an integrated environmental management system.

The Preparation of Magnetic Chitosan Nanoparticles with GABA and Drug Adsorption-Release (GABA를 담지한 자성 키토산 나노입자 제조와 약물의흡수 및 방출 연구)

  • Yoon, Hee-Soo;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.541-549
    • /
    • 2020
  • The Drug Delivery System (DDS) is defined as a technology for designing existing or new drug formulations and optimizing drug treatment. DDS is designed to efficiently deliver drugs for the care of diseases, minimize the side effects of drug, and maximize drug efficacy. In this study, the optimization of tripolyphosphate (TPP) concentration on the size of Chitosan nanoparticles (CNPs) produced by crosslinking with chitosan was measured. In addition, the characteristics of Fe3O4-CNPs according to the amount of iron oxide (Fe3O4) were measured, and it was confirmed that the higher the amount of Fe3O4, the better the characteristics as a magnetic drug carrier were displayed. Through the ninhydrin reaction, a calibration curve was obtained according to the concentration of γ-aminobutyric acid (GABA) of Y = 0.00373exp(179.729X)-0.0114 (R2 = 0.989) in the low concentration (0.004 to 0.02 wt%) and Y = 21.680X-0.290 (R2 = 0.999) in the high concentration (0.02 to 0.1 wt%). Absorption was constant at about 62.5% above 0.04 g of initial GABA. In addition, the amount of GABA released from GABA-Fe3O4-CNPs over time was measured to confirm that drug release was terminated after about 24 hr. Finally, GABA-Fe3O4-CNPs performed under the optimal conditions were spherical particles of about 150 nm, and it was confirmed that the properties of the particles appear well, indicating that GABA-Fe3O4-CNPs were suitable as drug carriers.

Effect of Heating Temperature and Time of Coffee Waste on The Adsorptivity of Formaldehyde (폼알데하이드 흡착능에 대한 커피부산물의 열처리 조건 영향)

  • Ahn, Sye Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.390-399
    • /
    • 2015
  • This study was conducted to examine the potential use of coffee waste (CW) as an adsorbent of HCHO by adding into fiberboard. For the purpose, CW treated with various temperatures and times was placed in desiccator with a HCHO solution and then the HCHO adsorptivity of the CW was measured by acetylacetone (ATAN) and DNPH methods. In the results of ATAN analysis, amount of HCHO adsorbed in distilled water was the lowest on the non-treated CW and steadily increased to $100^{\circ}C$-treated temperature. However, over the $100^{\circ}C$, heating temperature (H-Temp) had not an effect on the HCHO adsorptivity of CW. Amount of HCHO adsorbed on CW itself was the highest at $100^{\circ}C$ H-Temp, following by $50^{\circ}C$, $150^{\circ}C$, $0^{\circ}C$, $250^{\circ}C$ and $200^{\circ}C$. For the HCHO adsorptivity of CW measured by DNPH methods, HCHO was not detected in the distilled water stirred with non-treated CW, but detected from the distilled water stirred with heating-treated CW. The content was the highest in the CW heating-treated at $100^{\circ}C$ for 10 min. In addition, HCHO adsorbed on CW itself increased to the H-Temp of $100^{\circ}C$ regardless of heating time, but decreased or reduced greatly degree of the increase over $100^{\circ}C$ H-Temp. In conclusion, optimal heating conditions of CW for the HCHO adsorption might be H-Temp between 100 and $150^{\circ}C$ with 10 min according as technical and economical reasons. Heating-treated CW manufactured with above the conditions can be used as an adsorbent in conventional fiberboard production for reducing HCHO emssion.

Relationship among Chemical Properties of Soils with Different Texture Taken from Plastic Film House of Chungbuk Area (충북지역 시설재배지 토성별 토양화학성의 상호관계)

  • Kim, Jai-Joung;Kang, Seong-Soo;Kim, Ki-In;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.144-150
    • /
    • 2006
  • Chemical characteristics and their interrelationships of 156 soils included by 74 sandy loam and 82 loam soils collected from plastic film house in Chungbuk area were investigated from 1998 to 2001. Seventeen chemical properties including pH, organic matter (OM), electrical conductivity (EC), inorganic nitrogen, available phosphorus, exchangeable cations, CEC, etc., were analyzed by correlation, standardized partial regression coefficient, and principal factor analysis. Standardized partial regression coefficients of chemical properties were estimated to determine the degree of contribution of EC and OM contents in soils. Principal factor analysis was applied to classify the studied chemical properties into different groups having similar chemical properties. The pH of experimental soils ranged from 4.24 to 7.14 and 4.95 to 7.35 for loam and sandy loam soils, respectively. The EC of soils varied from 0.93 to $15.65dS\;m^{-1}$ for loam and $0.91{\sim}22.30dS\;m^{-1}$ for sandy loam soils, respectively with significant differences among them. The EC measured by 1:5 $H_2O$ dilution method and saturation method were significantly related with 8.163 and 8.599 as the slopes of regression equation for loam and sandy loam soils, respectively. These slopes more than 8.0 in this regression equation was higher than the slope of 5.0 that is estimated from dilution coefficient suggesting that EC measured by 1:5 dilution method might be erratic. The standardized partial regression coefficient of different chemical properties for the estimation of EC was in the order of $NO_3{^-}$ > $Cl^-$ > OM > exchangeable Mg for loam soils and $NO_3{^-}$ > exchangeable Mg > $Cl^-$ for sandy loam soils. Contribution order of the chemical properties based on standardized partial regression coefficient differed 1:5 dilution method and saturation method, indicating that different chemical compounds might be present in the extract solutions of these two methods. Consequently the measurement of EC by saturation method was thought be still better for estimation of chemical property because accuracy of EC measurement by 1:5 dilution method can't be improved by any specific coefficient for adjustment of EC. Regardless of differences in soil textures and extraction methods, correlation coefficients between EC and the other chemical properties were routinely in the order of $NO_3{^-}$ > $Cl^-$ > degree of base saturation > exchangeable Mg > exchangeable Ca > $SO{_4}^{2-}$. The principal factor analysis revealed four factor groups of the chemical properties studied. The groups for sandy loam were as follows; ; 1. salt components, 2. soil reaction components, 3. fixed and adsorption components, 4. CEC components. The groupings of loam soils were similar to sandy loam except that exchangeable Na substituted the CEC of sandy loam.

The Effect of Some Amendments to Reduce Ammonia during Pig Manure Composting (몇 가지 처리제의 첨가에 의한 돈분의 퇴비화 과정 중 암모니아 발생 저감 효과)

  • Joo, Jin-Ho;Kim, Dae-Hoon;Yoo, Jae-Hong;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.269-273
    • /
    • 2007
  • Occurrence of malodor could cause adverse impacts on human health and increase public interest. Therefore, scientific methods to decrease odor is required. Endeavor to decrease odor from compost however has not fully been successful. The purpose of this research is assessment of some amendments to reduce $NH_3$ from immature composts. Calcium hydroxide was applied to composts due to it's characteristics to increase pH. Activated carbon and zerovalent iron (ZVI) were selected because of their adsorption properties. The research results were as follows: Calcium hydroxide, activated carbon, zerovalent iron increased the composting temperature above $60^{\circ}C$. The addition of calcium hydroxide, activated carbon, and ZVI to compastry process increased pH 8.6 - 8.8 from $1^{st}$ day to $14^{th}$ day. During the 14 days of composting, addition of calcium hydroxide, activated carbon and ZVI changed EC from $2.15-0.66dS\;m^{-1}$, $1.48-1.11dS\;m^{-1}$, respectively and $1.77-0.68dS\;m^{-1}$. The difference in EC of the compost was due to irregularities of samples. Organic matter in the compost decreased through out theexcept control. The $NH_4-N/NO_3-N$ ratio of all experimental compost increased through the process. The addition of activated carbon, calcium hydroxide and ZVI decreased $NH_3$ from 0.1ppm, 0.7ppm and 1.7ppm more than the control (pig manure and sawdust), 9.3ppm, in 30 days of composting. In conclusion, odor from prematured compost decreased by addition of chemicals like calcium hydroxide, activated carbon, zerovalent iron. Moreover, use of these $NH_3$ reducers alone or together combined at different periods of composting etc. could decrease $NH_3$.

Mineralogy and Geochemistry of Fault Gouge in Pyrite-rich Andesite (함황철석 안산암 내 단층 비지의 광물학적 및 지구화학적 연구)

  • Park, Seunghwan;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.301-310
    • /
    • 2014
  • To investigate the role of fault gauge in the behavior of heavy metals caused by the acid rock drainage in the area of pyrite-rich andesite, XRD, pH measurement, XRF, SEM-EDS, ICP, and sequential extraction method were used. Bed rock consists of quartz, pyrophyllite, pyrite, illite, and topaz, but the brown-colored fault gouge is composed of quartz, illite, chlorite, smectite, goethite, and cacoxenite. The mineral composition of bed rock suggests that it is heavily altered by hydrothermal activity. The concentrations of heavy metals in the bed rock are as follows, Zn > As > Cu > Pb > Cr > Ni > Cd, and those in fault gouge are As > Zn > Pb > Cr > Cu > Ni > Cd. The concentrations of the heavy metals in the fault gouge are generally higher than those in the bed rock, especially for Pb, As, and Cr, which were more than twice as those in the bed rock. It is believed that the difference in the amount of heavy metals between the bed rock and the fault gouge is mainly due to the existence of goethite which is the main mineral composition in the fault gouge and can play important role in sequestering these metals by coprecipitation and adsorption. The low pH, caused by oxidation of pyrite, also plays significant role in fixation of those metals. It is confirmed that the fractions of labile (step 1) and acid-soluble (step 2), which can be easily released into the environment, were higher in the bed rock. Those fractions were relatively low in fault gauge, suggesting that fault gauge can play important role as a sink of heavy metals to prevent those ones from being released in the area where the acid rock drainage can have an influence.