• Title/Summary/Keyword: Admixture materials

Search Result 216, Processing Time 0.023 seconds

A Study on Physical Properties of Mortar Mixed with Fly-ash as Functions of Mill Types and Milling Times

  • Seo, Sung Kwan;Chu, Yong Sik;Shim, Kwang Bo;Jeong, Jae Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.435-443
    • /
    • 2016
  • Coal ash, a material generated from coal-fired power plants, can be classified as fly ash and bottom ash. The amount of domestic fly ash generation is almost 6.84 million tons per year, while the amount of bottom ash generation is 1.51 million tons. The fly ash is commonly used as a concrete admixture and a subsidiary raw material in cement fabrication process. And some amount of bottom ash is used as a material for embankment and block. However, the recyclable amount of the ash is limited since it could cause deterioration of physical properties. In Korea, the ashes are simply mixed and used as a replacement material for cement. In this study, an attempt was made to mechanically activate the ash by grinding process in order to increase recycling rates of the fly ash. Activated fly ash was prepared by controlling the mill types and the milling times and characteristics of the mortar containing the activated fly ash was analyzed. When the ash was ground by using a vibratory mill, physical properties of the mortar mixed with such fly ash were higher than the mortar mixed with fly ash ground by a planetary mill.

Comparison on International Standards of Fly Ash as Admixture in Concrete (콘크리트 혼화재인 Fly Ash의 세계 표준규격 비교)

  • 임남웅;조영임
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.66-71
    • /
    • 1995
  • This study reviews the internationally existing standards for fly ash and the other pozzolanic materials. The standards reviewed for this report covers the thirteen contries around the world including USA. It is found that the comparison of standards appeared to be different for technical test requirements from the country to country. This may be due to the different composition of fly ash produced in each different country as by-product. It is importantly shown that the four countries, including USA have standardized to compose the total 70% of $SiO_2+Al_2O_3+Fe_2O_3$. The other countries have required to have the individual chemical composition, such as 45% $SiO_2$ in Japan. The loss on ignition is generally in the range of 5-6%, but the maximum 12% was allowed in some countries. This depends on the quality of fly ash. The moisture content is generally less than 3% in all countries except India allows up to 12% The pozzolanic activity (as the compression) has been standardized that the 28 days curing in compression was subjected in all countries but 91 days curing in compression was tested in Japan. It is shown that KS L 5405 is almost identical to JIS A 6201.

  • PDF

Influence on Compressive Strength and Drying Shrinkage of Concrete with Urea-Water Soluble Sulfur Admixture (요소-수용성 유황 혼화제가 콘크리트 압축강도 및 건조수축에 미치는 영향)

  • Park, Jae Kyu;Han, Sang Hoon;Hong, Ki Nam;Cho, Yong In;Chai, Yuzhe
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.74-81
    • /
    • 2016
  • This paper presents an experimental study to ivestigate mechanical property of concretes according to addition of urea and urea-water soluble sulfur contents. Urea was added at 5~20% replacement by weight of water, and water soluble sulfur was used at 2%, 4% replacement by weight of cement. The setting times, the hydration heat, the compressive strength, and the drying shrinkage, were measured on concretes with single and binary admixtures. From the test result, it was confirmed that the hydration heat of urea-water soluble sulfur was lower than that of normal concrete by $10.1^{\circ}C$, and the drying shrinkage of urea-water soluble sulfur concrete was more excellent than normal concrete. In the case of urea of 5%, Compressive strength were improved with an increase of water soluble sulfur contents. The urea-water soluble sulfur used in this research can be used as improvement materials for drying shrinkage and compressive strength.

A Study on the Desulfurization Efficiency of Limestone Sludge with Various Admixtures

  • Seo, Sung Kwan;Chu, Yong Sik;Shim, Kwang Bo;Lee, Jong Kyu;Song, Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.479-482
    • /
    • 2015
  • The flue gas desulfurization (FGD) process is one of the most effective methods to reduce the amount of $SO_2$ gas (up to 90%) generated by the use of fossil fuel. Limestone is usually used as a desulfurizing agent in the wet-type FGD process; however, the limestone reserves of domestic mines have become exhausted. In this study, limestone sludge produced from the steel works process is used as a desulfurizing agent. Seven different types of additives are also used to improve the efficiency of the desulfurization process. As a result, alkaline additive is identified as the least effective additive, while certain types of organic acids show higher efficiency. It is also observed that the amount of FGD gypsum, which is a by-product of the FGD process, increases with the used of some of those additives.

Strength and Durability Properties of Concrete with Starch Admixture

  • Akindahunsi, A.A.;Uzoegbo, H.C.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.323-335
    • /
    • 2015
  • This paper examines some properties of concrete, such as strength, oxygen permeability and sorptivity using starch [cassava (CA) and maize (MS)] as admixtures. Concrete cubes containing different percentages of the CA and MS by weight of cement (0, 0.5, 1.0, 1.5 and 2.0 %) were cast. Compressive strength tests were carried out after 3, 7, 14, 21, 28, 56, 90, 180, 270 and 365 days of curing. Oxygen permeability and sorptivity tests were carried out on another set of concrete specimens with the same percentages of starch at 7, 28, 90, 180, 270 and 365 days. Oxygen permeability and sorptivity tests data obtained were subjected to Kruskal-Wallis one-way analysis of variance by ranks. The strength increase after 1 year over the control for CA 0.5 and CA 1.0 are 2.7 and 3.8 % respectively, while MS 0.5 and MS 1.0 gave 1.5 % increase over control. These results showed a decrease in oxygen permeability and rates of sorptivity, with concretes containing starch as admixtures giving better performance than the control concretes.

An experimental study on performance of concrete with constituent materials of shotcrete (숏크리트 구성 재료에 따른 콘크리트 성능에 관한 실험적 연구)

  • Kim, Sang-Myung;Shin, Jin-Yong;Ma, Sang-Jun;Nam, Kwan-Woo;Kim, Ki-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.59-68
    • /
    • 2008
  • The experiment was carried out to investigate the influence of coarse aggregate, admixture, and accelerator on the properties of concrete. As the maximum size of coarse aggregate decreased from 13 mm to 8 mm, fluidity of fresh concrete declined but compressive strength and dynamic modulus of elasticity of hardened concrete increased remarkably. The mechanical properties of concrete substituted silica fume to the plain concrete improved, the compressive strength of that substituted blast furnace slag increased slightly. The hydration reaction and compressive strength of specimen with sodium luminate type accelerator were high at initial, but specimen with alkali free type accelerator improved largely in 28 days.

  • PDF

Glass powder admixture effect on the dynamic properties of concrete, multi-excitation method

  • Kadik, Abdenour;Boutchicha, Djilali;Bali, Abderrahim;Cherrak, Messaouda
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.671-678
    • /
    • 2020
  • In this work, the dynamic properties of a high performance concrete containing glass powder (GP) was studied. The GP is a new cementitious material obtained by recycling waste glass presenting pozzolanic activity. This eco-friendly material was incorporated in concrete mixes by replacing 20 and 30% of cement. The mechanical properties of building materials highly affect the response of the structure under dynamic actions. First, the resonant vibration frequencies were measured on concrete plate with free boundary conditions after 14, 28 and 90 curing days by using an alternative vibration monitoring technique. This technique measures the average frequencies of several excitations done at different points of the plate. This approach takes into account the heterogeneity of a material like concrete. So, the results should be more precise and reliable. For measuring the bending and torsion resonant frequencies, as well as the damping ratio. The dynamic properties of material such as dynamic elastic modulus and dynamic shear modulus were determined by modelling the plate on the finite element software ANSYS. Also, the instantaneous aroused frequency method and ultrasound method were used to determine the dynamic elastic modulus for comparison purpose, with the results obtained from vibration monitoring technique.

Charactetistics of Cement-Fly Ash Paste Containing High Early Strength Admixtures (조강제를 함유한 플라이애쉬 시멘트 페이스트의 특징)

  • 이진용;조현수;이선우;이광명
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.51-56
    • /
    • 2000
  • Fly ash used as a cement replacement material increases the long term strength and also improves the durability of concrete and mortar. However, the use of fly ash is a little in spite of great benefit. In order to increase the consumption of fly ash, it has to be used as a cement replacement materials in the production of mortar and concrete, and the reduction of early strength development due to the use of fly ash also has to be diminished. In this study, many chemical compounds which accelerate the early strength was investigated. The $Na_2$$SO_4$, $K_2$$SO_4$, Triethanolamine were selected and applied to the production of mortar. It was found that they enhance the early strength development of mortar(1, 3day) and decrease the amount of $Ca(OH)_2$, and also increase the production of ettringite. According to the results of mercury instruction test, the pores ranged from 0.01 $\mu\textrm{m}$ to 5$\mu\textrm{m}$ were decreased and it was also found in the analysis of X ray and SEM that fly ash increases the amount of ettringite at early ages.

Effect of the Pore Structure of Concrete on the Compressive Strength of Concrete and Chloride Ions Diffusivity into the Concrete

  • Kim, Jin-Cheol;Paeng, Woo-Seon;Moon, Han-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.345-351
    • /
    • 2003
  • The transport characteristics of deleterious ions such as chlorides depend on the pore structures of concrete and are the major factors in the durability of concrete structures in subjected to chloride attack such as in marine environments. In this paper, the effect of the pore structure on compressive strength and chloride diffusivity of concrete was investigated. Six types of concretes were tested. The pore volume of concrete containing mineral admixtures increased in the range of 3∼30nm due to micro filling effect of hydrates of the mineral admixtures. There was a good correlation between the median pore diameter, the pore volume above 50nm and compressive strength of concrete, but there was not a significant correlation between the total pore volume and compressive strength. The relationship between compressive strength and chloride diffusivity were not well correlated, however, pore volume above 50nm were closely related to the chloride diffusion coefficient.

Reinforcing Effect of Dredged Marine Clay Mixed with Micro-Fiber (Micro-Fiber 흔라네 의한 준설해성점토의 보강효과)

  • 박영목;우문정;허상목;정연인
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.75-81
    • /
    • 2003
  • To investigate the reinforcing effect of subsurface layers of marine dredged clay(DMC) mixed with the micro-fiber(MF), a series of laboratory tests were performed on the DMC specimens with and without MF through uniaxial and triaxial compression tests. For the test programme, the elapsed time after dredging of marine clay, mixing rate and length of MF, and curing time of the composite were chosen as the important factors affecting the strength behaviour. The strength of the DMC mixed with MF and waste lime(WL) used for the admixture was found to be enhanced with the increasing content and length of MF, and with decreasing water content of DMC. MF and WL were applied as materials for trafficability improvement of the very soft reclaimed ground by DMC.