• Title/Summary/Keyword: Admixture

Search Result 1,156, Processing Time 0.028 seconds

Compressive Strength of Cement mortar Admixed with Waste Phosphogypsum Calcination with various Temperature (하소 온도가 다른 페인산석고를 혼입한 시멘트 모르타르의 압축강도 특성)

  • An Yang Jin;Yoon Seong Jin;Mun Kyoung Ju;Soh Yang Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.228-231
    • /
    • 2004
  • The purpose of this study evaluates possibilities of waste phosphogypsum into concrete by steam curing admixture. The waste phosphogypsums were classified into 4 forms(Dihydrate, $\beta-Hemihydrate$, III-Anhydrite and II-Anhydrite) which were changed to in low temperature of calcination. Also, various admixtures were made of waste phosphogypsum(PG) and pozollanic fine powderers (Fly-ash, Blast Furnace Slag), and the basic properties of the cement mortars incorporating with these admixtures were examined and analyzed under a verity of experimental conditions. As a result, III-Anhydrite, these is similar to II-Anhydrite from compressive strength and are great in the effect of strength improvement. also, it was proved that specimens made on type III-Anhydrite of waste phosphogypsum and blast furnace slag increased on the compressive strength of cement mortar. Therefore, III-Anhydrite phosphogypsum calcined at lower temperature could be used as steam curing admixture for concrete 2th production.

  • PDF

Prediction of temperature distribution in hardening silica fume-blended concrete

  • Wang, Xiao-Yong
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.97-115
    • /
    • 2014
  • Silica fume is a by-product of induction arc furnaces and has long been used as a mineral admixture to produce high-strength, high-performance concrete. Due to the pozzolanic reaction between calcium hydroxide and silica fume, compared with that of Portland cement, the hydration of concrete containing silica fume is much more complex. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of concrete containing silica fume. The heat evolution rate of silica fume concrete is determined from the contribution of cement hydration and the pozzolanic reaction. Furthermore, the temperature distribution and temperature history in hardening blended concrete are evaluated based on the degree of hydration of the cement and the mineral admixtures. The proposed model is verified through experimental data on concrete with different water-to-cement ratios and mineral admixture substitution ratios.

Metachromasy of Methylene Blue and Thionine on the Phospholipid Bilayer Membrane (Phospholipid 이중층막에서 Methylene Blue와 Thionine의 Metachromasy)

  • Kim, Ki-Jun;Lee, Hoo-Seol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.43-49
    • /
    • 1996
  • Metachromatic properties of admixture of thionine and methylene blue(MB) in aqueous solution and phospholipid bilayer membrane have been studied by absorption spectroscopy. When thionine and MB were mixed, new coaggregate has been formed because of MB was redistributed to thionine aggregate. In phosphlipid bilayer membrane system, the highly concentrated thionine was easily formed the coaggregation with MB moiety independent of MB concentration, and absorption band of admixture were more transferred to short wavelength than aqueous system. In monomeric thionine concentration, the coaggregation band was observed at the middle wavelength between the site of monomeric thionine and the site of dimeric MB in the presence of lipid bilayer membrane.

Improvement of Properties in High Strength Concrete Using Fly ash and Gypsum (플라이 애시 및 석고를 활용한 고강도용 콘크리트의 성능개선)

  • 김기형;최재진;최연황
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.89-94
    • /
    • 1999
  • The workability of high strength concrete using high range water reducing admixture is varied rapidly according to elapsed time. For using the high strength concrete in situ, careful caution on workability is necessary. By using fly ash as a admixture, the slump loss of concrete can be reduced considerably, but the early strength of concrete used fly ash is smaller than that not used fly ash. For the purpose of elevating the utilization of fly ash on high strength concrete, the high fluidity retention and the strength development in early age are necessary in concrete used fly ash. In this study, to improve the fluidity retention and to acquire strength development on concrete used fly ash, the gypsum is applied.

  • PDF

Properties of Concrete Containing third binary mineral Admixture (3성분계 혼화재료로 사용한 콘크리트 특성)

  • 조일호;양재성;김진희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.95-101
    • /
    • 1999
  • This study was performed to evaluate the characteristics of workability and strength of the concrete containing mineral admixtures such as flyash, blast furnace slag, zeolite powder. As a result, considering their workability and strength, the optimum replacement ratio of them to plain concrete were obtained for each ternary admixture. This increased compressive strength was ascribed to both the closer parkinof fine particles and pozzolan reactivity of powders. This work showed that could be effectively utilized as a blending material without any decrease in the strength of early hydration stage. On the other hand, we found that the compressive strength at early ages ternary ordinary and high strength concrete untill 7 days was small, but that ternary concrete at 28days was highly increased about 31% and 15% extent.

  • PDF

Strength Property of Municipal Wasts Ash Hardening using Fly-Ash and Paper Sludge Ash (플라이 애시 및 제지슬러지 애시를 혼입한 도시 쓰레기 소각재 경화체의 강도적 특성)

  • 김재신;고대형;문경주;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.333-338
    • /
    • 2000
  • The purpose of this study is to evaluate the compressive strength properties of municipal waste ash hardening using the unrefined fly-ash and paper sludge ash and to offer basic data to someone for recycling municipal waste ash. Unrefined fly-ash and paper sludge ash are used with admixture. MWA are tested that grading, specific gravity and pH value and observed microsructure of particle with SEM. The compressive strengths of MWA hardening which is mixed with regular ratio according to each admixture are measured. In the results of test, fly-ash is very effective for reducing content of cement by 50% in the recycling of MWA. But proper content mixed paper sludge ash is recommend by about 20% in binder.

  • PDF

A Study on Application of Ready Mixed Concrete of Lightweight Aggregate using Rubbish (폐분진을 이용한 인공경량골재콘크리트의 레미콘 적용 연구)

  • Noh Youn Sun;Ji Suk Won;Seo Chee ho;Lee Jae Sam;Jee Suck Won;Lee Seung Yeun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.427-430
    • /
    • 2005
  • The purpose of this study is to choose the right chemical admixture to reduce slump loss of lightweight aggregate concrete. So we compare 3 types of chemical admixture as measuring slump loss from mixing to 60 minutes. The lightweight aggregate of this study is made by clayt and dust from lots of industry. To save natures, we will use many types of industrial wastes and try to spend much making artificial aggregate.

  • PDF

An Experimental Study on the Property of Strength for kinds and Replacement ratio of Admixture under Low Temperature (저온 환경하에서의 혼화재 종류 및 대체율에 따른 콘크리트의 강도발현특성에 관한 연구)

  • Kim, Ho-Soo;Jun, Soon-Je;Ban, Seong-Soo;Choi, Sung-Woo;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.687-690
    • /
    • 2005
  • Recently, to consider financial and constructive aspect, usage of Admixture, like Blast- Furnace Slag and Fly-Ash, are increased. These mineral admixtures, a by-product of steel industry, have many advantage, to reduce the heat of hydration, increase in ultimate strength, improve workability and etc. But it also reduces early-age strength, so it is prevented from using of Blast-Furnace Slag at cold-weather-concrete. In this study, for the purpose of increasing usage of mineral admixtures, like Blast-Furnace Slag and Fly ash, it is investigated the strength properties of concrete subjected to under low temperature According to this study, if early curing is carried out before having frost damage, the strength of concrete, subjected to frost damage, is recovered. And to consider increasing effect of strength, it is more effective to use of mineral admixtures, especially to use blast furance slag.

  • PDF

The Properties of Concrete(BlueCon) using Fluosilicate Salt Based Admixtures and Estimation of Field Application (규불화염계 혼화제를 사용한 콘크리트의 특성 및 현장적용성 평가)

  • Choi Se Jin;Cho Jae Hyung;Kim Do Su;Oh Joo Yeol;Lee Seong Yong;Lee Seong Yeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.359-362
    • /
    • 2005
  • This study was performed to know the properties and estimation of field application of concrete(Bluecon) using fluosilicate salt based admixture made from by-product during phosphoric acid manufacturing process. Mix proportions for experiment were modulated at 0.45 of water-binder ratio and $0.5-2.0\%$ of adding ratio of fluosilicate salt based inorganic compound. Evaluation for Field application of concrete was carried out batch plant test at remicon factory and building construction. According to results. it was found that slump of concrete(Bluecon) using fluosilicate salt based admixture is higher about 10 to 20 mm than plain concrete, and air content is similar to each other. And the water permeability and crack of bluecon is lower than that of plain concrete.

  • PDF

Experimental Study on Bonding Properties of Reinforced Concrete with Water-Cement Ratio and Blending of Mineral Admixture (물-시멘트비 및 혼화재 혼입에 따른 철근콘크리트의 부착 특성에 관한 연구)

  • Choi, Yoon-Suk;Kim, Myung-Yu;Yang, Eun-Ik;Yi, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.225-228
    • /
    • 2006
  • To clarify the one body behavior of reinforcing bar and concrete, it is important to investigate bond characteristics between two materials. Bond strength is decided by applied force and interface area between reinforcing bar and concrete. And, the resultant force of chemical adhesive force, frictional force, and mechanical interaction are to be main factors. Property of concrete influences on chemical adhesive force and frictional force; bond strength is decreased by corrosion of reinforcing bar, as the result, durability is also decreased. In this study, to confirm bond characteristics with property of concrete, w/c ratio and blending of mineral admixture were selected as the main test parameters. The results obtained from this study will be used as the basic data for bond characteristics with corrosion.

  • PDF