• Title/Summary/Keyword: Admixture

Search Result 1,155, Processing Time 0.021 seconds

Experimental Study on the Properties of Surface Treatment Fly Ash Using Arc Discharge (아크방전을 이용한 표면개질 플라이애시의 특성에 관한 실험적 연구)

  • Kim, Sun-A;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.357-364
    • /
    • 2018
  • Fly ash is a material used as a concrete admixture. When fly ash is used for concrete manufacturing, it is expected to improve the performance such as reduction of cement usage and increase of chemical resistance. However, fly ash have some problems such as unburned carbon content and amorphous film on the surface of fly ash particles. When concrete is manufactured using fly ash containing a large amount of unburned carbon, there is a problem that the slump is lowered due to adsorption of AE agent. In addition, the amorphous film on the surface of the particles prevents the reactive substances from leaching out of the fly ash. Therefore, a method of surface treatment of fly ash using plasma has been studied to remove such unburned carbon and amorphous films. However, plasma has the problem that $O_3$ is generated when $O_2$ is used as an active gas. $O_3$ is a harmful substance and adversely affects the health of the experimenter. In this study, the surface of fly ash was treatment by arc discharge. Experimental results show that the unburned carbon is removed when the surface of fly ash is treatment by arc discharge and the amorphous film was broken and the reactivity was improved. Therefore, it is considered that arc discharge can treatment the surface of fly ash and improve the quality of fly ash.

Evaluation on Mechanical Performance and Chloride Ion Penetration Resistance of On-Site Shotcrete Made with Slurry-Type Accelerator (슬러리형 급결제를 활용한 현장적용 숏크리트의 역학적 성능 및 염해저항성 평가)

  • Kim, Hyun-Wook;Yoo, Yong-Sun;Han, Jin-Kyu;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.507-515
    • /
    • 2018
  • The purpose of this research is to develop a slurry-type accelerator that contains various beneficial properties such as reduction of dust generation, lower alkalinity, early age strength development, etc., and uses such slurry type accelerator to produce high performance shotcrete that present excellent resistant against chloride ion penetration. In this work, shotcrete mixtures of 0.44 and 0.338 water-to-binder ratio (w/b) were produced at construction site using slurry-type accelerator. The mechanical properties and chloride ion penetration resistance of such shotcrete (including base concrete) were evaluated. According to the experimental results, the slurry-type accelerator was successfully used to produce both w/b 0.44 and 0.338 shotcretes. The 1 day and 28 day compressive strength of shotcrete were found to be closer to or higher than 10MPa and 40MPa, respectively. The w/b 0.338 shotcrete that used 40% replacement of blast furnace slag showed lower compressive strength than w/b 0.44 shotcrete without any mineral admixture at 1 day. However, the compressive strength with 40% blast furnace slag increased significantly at 28 day. Moreover, there was more than 50% increase in chloride ion penetration resistance with blast furnace slag, showing its strong potential for higher performance shotcrete application.

Strength and Earth Pressure Characteristics of Industrial Disposal Flowable Filling Materials Utilizing Backfiller (뒤채움재로 사용된 산업폐기물 유동화 처리토의 강도 및 토압특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.5-13
    • /
    • 2021
  • Due to population growth and industrial development, the amount of industrial waste is increasing every year. In particular, in a thermal power plant using finely divided coal, a large amount of coal ash is generated after combustion of the coal. Among them, fly ash is recycled as a raw material for cement production and concrete admixture, but about 20% is not utilized and is landfilled. Due to the continuous reclamation of such a large amount of coal ash, it is required to find a correct treatment and recycling plan for the coal ash due to problems of saturation of the landfill site and environmental damage such as soil and water pollution. In recent years, the use of a fluid embankment material that can exhibit an appropriate strength without requiring a compaction operation is increasing. The fluid embankment material is a stable treated soil formed by mixing solidifying materials such as water and cement with soil, which is the main material, and has high fluidity before hardening, so compaction work is not required. In addition, after hardening, it is used for backfilling or filling in places where compaction is difficult because higher strength and earth pressure reduction effect can be obtained compared to general soil. In this study, the possibility of use of fluidized soil using high water content cohesive soil and coal ash is considered. And it is intended to examine the flow characteristics, strength, and bearing capacity characteristics of the material, and to investigate the effect of reducing the earth pressure when applied to an underground burial.

The Evaluation of Durability Performance in Mortar Curbs Containing Activated Hwangtoh (활성 황토를 혼입한 모르타르 기반 경계석의 내구성능 평가)

  • Kwon, Seung-Jun;Kim, Hyeok-Jung;Yoon, Yong-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.520-527
    • /
    • 2020
  • Hwangtoh is the rich resource that accounts for about 15.0% of the domestic soil, and can be used as the admixture of concrete with Pozzolan characteristics if activated by rapidly freezing after burning with high temperature. In this study, the mortar curbs containing active hwangtoh were produced, based on the mixture for the mortar curbs sold on the market. The substitution rate of active hwangtoh were considered 10.0% and 25.0%, and the test items were selected to compressive and flexural strength tests, freezing/thawing resistance tests, accelerated carbonation tests, and accelerated chloride diffusion tests. In the results of the mechanical performance, it was showed that the highest strength was evaluated in OPC mixture, and the increase in strength was small by the increase of age, which was believed to be due to the fact that most of the strength in each mixture was created in three days of steam curing. The results of the freezing/thawing tests for 28 aged days showed the reduction rate of compressive strength was 85.0% or higher for all specimen, meeting the criteria presented. The accelerated carbonation tests were carried out on the specimen at 28 days of age, and the results showed that the mortar with active hwangtoh had lower carbonation resistance performance than mortar with OPC. The passed charge of each mixture was assessed in accordance with ASTM C 1202 on 28 and 91 aged days. The OPC mixture had "Low" rate and the mortar with active hwangtoh had "Moderate" rate. So it was thought that the mortar with active hwangtoh had appropriate resistance performance for chloride attack.

Position of Hungarian Merino among other Merinos, within-breed genetic similarity network and markers associated with daily weight gain

  • Attila, Zsolnai;Istvan, Egerszegi;Laszlo, Rozsa;David, Mezoszentgyorgyi;Istvan, Anton
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.10-18
    • /
    • 2023
  • Objective: In this study, we aimed to position the Hungarian Merino among other Merinoderived sheep breeds, explore the characteristics of our sampled animals' genetic similarity network within the breed, and highlight single nucleotide polymorphisms (SNPs) associated with daily weight-gain. Methods: Hungarian Merino (n = 138) was genotyped on Ovine SNP50 Bead Chip (Illumina, San Diego, CA, USA) and positioned among 30 Merino and Merino-derived breeds (n = 555). Population characteristics were obtained via PLINK, SVS, Admixture, and Treemix software, within-breed network was analysed with python networkx 2.3 library. Daily weight gain of Hungarian Merino was standardised to 60 days and was collected from the database of the Association of Hungarian Sheep and Goat Breeders. For the identification of loci associated with daily weight gain, a multi-locus mixed-model was used. Results: Supporting the breed's written history, the closest breeds to Hungarian Merino were Estremadura and Rambouillet (pairwise FST values are 0.035 and 0.036, respectively). Among Hungarian Merino, a highly centralised connectedness has been revealed by network analysis of pairwise values of identity-by-state, where the animal in the central node had a betweenness centrality value equal to 0.936. Probing of daily weight gain against the SNP data of Hungarian Merinos revealed five associated loci. Two of them, OAR8_17854216.1 and s42441.1 on chromosome 8 and 9 (-log10P>22, false discovery rate<5.5e-20) and one locus on chromosome 20, s28948.1 (-log10P = 13.46, false discovery rate = 4.1e-11), were close to the markers reported in other breeds concerning daily weight gain, six-month weight, and post-weaning gain. Conclusion: The position of Hungarian Merino among other Merino breeds has been determined. We have described the similarity network of the individuals to be applied in breeding practices and highlighted several markers useful for elevating the daily weight gain of Hungarian Merino.

Physical and Chemical Properties of Atomizing EFOS as Fine Aggregate for Concrete (아토마이징 전기로 산화슬래그 잔골재의 물리·화학적 특성)

  • Beom-Soo Kim;Sun-Mi Choi;Sang-Chul Shin;Sun-Gyu Park;Jin-Man Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.70-78
    • /
    • 2023
  • Blast furnace slag, a by-product of the steel industry, is mostly recycled as concrete admixture, but electric arc furnace slag has not been recycled to date. In particular, since electric arc furnace slag partially contains free lime (free-CaO) in the discharge, it is necessary to review this in order to recycle f or construction materials. Recently an atomizing process which is a method of rapidly cooling electric arc furnace slag has been developed and applied. Therefore, in order to use the fine aggregate of oxidized slag from electric furnace restored by this method as an aggregate for concrete, physical damage and chemical reviewing are required. In this study, a physical and chemical review was conducted on the fine aggregate of Electric Arc Furnace Oxidizing Slag (EFOS) as a by-product of the steel manufacturing process with atomizing process. In this experimental study, EFOS was experimentally examined about whether it can be used as concrete fine aggregate. Also, we intend to provide basic data for the future use of the EFOS fine aggregate. As a result of the experimental study, it was found that the fine aggregate of the EFOS satisfied the quality standards of the fine aggregate for concrete in most items specified by Korean Standard.

Effect of Nano-sized Calcium-silicate-hydrate (C-S-H) Crystals on Cement Hydration (나노 크기 칼슘-실리케이트-하이드레이트(C-S-H) 결정이 시멘트 수화에 미치는 영향 분석)

  • Gyeong-Tae Kim;Su-Ji Woo;Sung-Won Yoo;Young-Cheol Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.153-160
    • /
    • 2023
  • In this study, nano-sized C-S-H crystals were synthesized using the liquid phase reaction method and their properties were investigated. The synthesized C-S-H crystals were added to the cement composite in suspension form to determine their effect on the hydration properties of the cement. The amount of chemical admixture was varied to obtain nano-sized C-S-H crystals with optimal agglomerated morphology, and SEM photographs were analyzed. A cleaning process was added to remove harmful substances other than the synthesiz ed C-S-H crystals. It was found that the concentration of harmful substances was reduced in the case of C-S-H crystals subjected to the cleaning process. The synthesized C-S-H suspensions were prepared with and without the cleaning process, and cement composites were prepared with the cement weight content as the main variable. The effect of C-S-H crystals on the initial hydration properties of the cement was confirmed by microhydration heat analysis. In addition, mortar specimens were prepared to measure the compressive strength over time. The test results showed that the nano-sized C-S-H crystals act as nucleation sites in the cement paste to promote the early hydration of the cement and increase the early compressive strength.

Influence of Mineral Admixtures on the Diffusion Coefficient for Chloride Ion in Concrete (광물질 혼화재가 콘크리트의 염소이온 확산계수에 미치는 영향)

  • Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong;Choi, Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.347-353
    • /
    • 2009
  • The qualitative factors influencing the ingress of chloride ion into concrete are water-binder (W/B) ratio, cement type, age, chloride ion concentration of given environment, wet and dry conditions, etc. Thus, an objective of this experimental research is to investigate the effects of cement types and environmental conditions on the chloride ion diffusion characteristics in concrete through the chloride ion diffusion test. For this purpose, the diffusion coefficients for chloride ion in concrete with three types of cement such as ordinary portland cement (OPC), binary blended cement (BBC), and ternary blended cement (TBC), were measured for the concrete specimens with W/B ratios of 32%, 38%, and 43%, respectively. The diffusion coefficients for chloride ion were also measured for the concrete specimens with W/B ratio of 43%, which were subjected to standard curing and field exposure conditions. It was observed from the test results that the resistance against chloride ion penetration increased with decreasing W/B ratio and those of BBC and TBC concretes were greater than that of OPC concrete. Therefore, it was revealed that the use of these cements containing mineral admixtures is required to extend the service life of RC structures exposed to chloride environment. On the other hand, it was noted that the resistance against chloride ion penetration of field exposure test specimens was slightly lower than that of standard curing test specimens due to the penetration of chloride ion under the irregular ambient temperature, splash of wave, and cycle of wet and dry.

Effect of Bio-Sulfur Modified by Slaked Lime on Cement Hydration Properties (소석회에 의해 개질된 바이오 황이 시멘트 수화 특성에 미치는 영향)

  • Woong-Geol Lee;Lae-Bong Han;Sung-Hyun Cho;Pyeong-Su Lee;Myong-Shin Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.509-516
    • /
    • 2023
  • The use of sulfur(S) in concrete has been variously studied as a way to improve salt resistance in concrete. However, sulfur is a solid material and is difficult to powder, which has disadvantages in its usability as an admixture or mixture for cement and concrete. For these problem, polymers such as dicyclopentadiene have been used to modify sulfur, but this also exists in a sticky state after modifying and does not improve the fundamental problem. So, reforming sulfur with slaked lime and the effect on cement hydration was examined by reforming sulfur with slaked lime, and the following conclusions were obtained. Depending on the reaction conditions, slaked lime modified bio-sulfur exists in a slurry state containing unreacted sulfur, unreacted slaked lime, calcium-sulfur(Ca-S) compounds and water. When slaked lime modified bio-sulfur is used as a cement mixture, salt resistance of concrete with slaked lime modified bio-sulfur is to be superior to that of plain concrete. This is believed to be because structure of cement hydrates with slaked lime modified bio-sulfur is to be more dense to that of plain cement hydrates by the continued presence of ettringite and can be used as a cement mixture in concrete.

Consideration on coexistence strategy of GM with non-GM, environmentally friend crops in South Korea (GM과 non-GM, 친환경작물의 공존을 위한 제도 보완의 필요성)

  • Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.245-256
    • /
    • 2008
  • The current legislation in South Korea clearly states that the tolerance threshold on the adventitious presence of GMO in environment-friendly agricultural products is 3.0% and no GM seed should be detected in their planting seed batches. To date, in Korea, there is no approved GM crop for commercial cultivation in field. However, several GM crops including rice, Chinese cabbage, potato and wild turf grass are currently under risk assessment for their environmental release. Also Korean government (Rural Development Administration, RDA) announced that 11 institutes including universities have been currently certified to carry out a risk assessment of GM crops. Meanwhile, the cultivated area and certified quantities of environment-friendly crops (organic, pesticide-free and low-pesticide) are sharply increasing every year according to the report of National Agricultural Products Quality Management Service (NAQS). In detail, in 2007, the certified quantities of environment-friendly agricultural products were elevated up to 100-fold for organic, 171-fold for pesticide-free and 2,324-fold for low-pesticide crops when compared with those in 1999. The total certified quantity of environment-friendly cereal crops in 2007 was equivalent to 6.4% of total production of cereal crops. Moreover, 24% of total production of root and tuber crops such as potato and sweet potato were certified for environment-friendly agricultural products. In these circumstances, I strongly suggest that current legislations on GM crop's safety management should be revised to include strategies for the coexistence of GM with non-GM crops, especially environment-friendly crops before GM crop is approved to be cultivated for commercialization. Since all types of crops are grown in an open environment, the adventitious presence of GM crops among non-GM crops is inevitable if appropriate measures for coexistence are not established for species by species such as isolation distance, workable management measures to minimize admixture.