• Title/Summary/Keyword: Admixing Agent

Search Result 4, Processing Time 0.016 seconds

An Analysis of Concrete Characteristics by Admixing Agent and Additive Contents According to the Change of Unit-Water (단위수량 변화에 따른 혼화제 종류 및 첨가량별 콘크리트의 특성 분석)

  • Ryu, Hyun-Gi;Woo, Jong-Kwon;Cho, Myeong-Ken
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.139-144
    • /
    • 2007
  • The purpose of this study is to analyze concrete characteristics by admixing agent and additive contents according to the change of unit-water to identify its effect on compressive strength. First of all, as for flesh concrete, overall unit-water showed a tendency to decrease as component inclusion rate of admixing agent was increased. In addition, air content showed a tendency to increase by increasing WR, WB, NP series admixing agent contents, on the other hand, the change of air content was gentle by around $1.5{\pm}0.5%$ for S, T, M series agents. Bulk density showed an inverse proportion to the change of air content. As for hardened concrete, expression rate of 3-day age compressive strength was generally decreased for S, T, WR, WB, NP, M series admixing agent component. Also, expression rate of 7-day age compressive strength showed an excellent record for S, M series agents, and expression rate of 28-day age compressive strength showed a tendency to increase more than plain on the whole.

Optimum Conditions of Simple Solidifying Agent for the Improvement of Loose Sand Ground (느슨한 모래지반 개량을 위한 간편고화재의 최적 배합비 및 혼합률)

  • Kwon, Ho-Jin;Jeong, Ki-Ryong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.15-21
    • /
    • 2004
  • This study is to develop simple solidifying agent to improve loose sand ground by admixing or injecting. This paper studied the optimum mixing ratio of micro cement, bentonite, chemistry admixture, plasticizer, accelerator for the optimum fluidity and strength. The optimum mixing ratio of micro cement and bentonite is 70% : 20%, the optimum ratio of the weight of rapid solidifying agent to the weight of total improved soil is about 8%, the optimum curing period is five days.

  • PDF

Performance Evaluation of Artificial Lightweight Aggregate Mortar Manufactured with Waste Glass (폐유리로 제조된 인공경량골재를 이용한 모르타르의 물리적 성능에 대한 평가)

  • Kim, Seong-Soo;Lee, Jeong-Bae;Nam, Ba-Reum;Park, Kwang-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.147-152
    • /
    • 2009
  • The compressive strength test, bulk density and mortar absorption ratio were carried out to utilize the data as the basic sources for the lightweight mortar and the lightweight concrete, through the study on the physical characteristics of the artificial lightweight aggregate (ALA) made of waste glasses, which was developed for the first time in the country. On the basis of these experiments, the density and the unit volume weight of the ALA showed the value less than 50% of the common aggregate due to the independent pore structure, and the mortar that contains ALA had no big difference from the Control mortar in the test of the absorption ratio. It is judged that this happens based on the internal independent pore structure of the ALA. In case of the mortar containing ALA, there was a tendency of declination in the compressive strength and the bending strength as the mixing rate is increasing, but all mortar showed more than 70% of the Control mortar compressive strength except for the La50 mortar. Hereafter, it is judged that according to the control of the mixing ratio of mineral admixing agent, water and cement, it will realize the equal strength to the control mortar, and the long term edurance is needed to be considered together.

A Study on the Utilization of Coal Fired Fly-ash as Microfine Grouting Materials (초미립자 지반주입재로서 플라이애쉬의 적용성에 관한 연구)

  • 천병식;김진춘
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.113-125
    • /
    • 1998
  • At the end of 1997 about 3 million tons of coal ash was produced as byproducts from the coal fired electrical power plants in Korea. Only about 27% of that byproducts was utilized as the admixtures of cement and concrete industry. But the large quantity of coal fired fly-ash has been used as the soil improvement materials in other countries. So the aim of this study is the estimation of the applicability of the coal fired fly-ash as microfine grouting materials by admixing the superfine particles which were separated from the coal fired fly-ash for the higher values. The 6 types of specimens were manufactured in the laboratory for the purpose of estimating the chemical and physical properties of cement and grouts. These specimens consisted of 2 specific surfaces of 6, 000 and 8, 000$cm^2$/g in Elaine method. And these specimens are devide into 3 ratios (30%, 50%, 70%) of fly-ash by weight. From the estimated properties of the coal fired fly-ash microflne cements and grouts, 50% fly-ash is the most suitable ratio for grouting materials. However, further study of durability is necessary for using fly-ash grouts practically at the field projects. The higher content of the unburned carbon of fly-ash increases the thinner layer of carbon on the surface of solution of grouts, and requires more quantity of surface active agent. As a results of this study, it is found that the microfine fly-ash is very useful as a good grouting material if 50% of fly-ash is added with the microfine portland cement. So, in the near future, if the coal fired fly-ash is able to be used as grouting material in Korea, the demand of fly-ash will increase rapidly.

  • PDF