• Title/Summary/Keyword: Admittance Model

Search Result 66, Processing Time 0.036 seconds

A study of Modifying Bus Impedance Matrix for Node Seperation (노드분할에 대한 모선 임피던스 행열 수정방법 연구)

  • Oh, Yong-Taek;Moon, Young-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.6-8
    • /
    • 1993
  • Short Circuit analysis is one of the most fundamental procedures for power system analysis problem. In order 10 solve the problem, In order to solve the problem, it's required to develop an advanced algorithm by which modified bus admittance matrix are easily computed for a large number of alternative network configuration. This paper proposes a new calculation method to efficiently modify the bus impedance matrix elements of large power system by method for removal of link, and presents its Practicality by applying the proposed method in the power system model.

  • PDF

Frequency Controllable Ultrasonic knife and made by multi-layered PZT ultrasonic transducer (다층 압전진동자를 이용한 주파수 가변 초음파 메스의 개발)

  • 김무준;하강열
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.506-512
    • /
    • 1997
  • Ultrasonic knives have been successfully used for the surgery of many medical fields. However, the conventional ultrasonic knives for surgical operation cannot be controlled its resonant frequency. So if the material to cut has different characteristic impedance then different ultrasonic knife will be needed. Because the optimum driving frequency of ultrasonic knife is different by characteristic impedance of material. In this work, using a frequency variable ultrasonic transducer made of multi-layered PZT vibrator, a frequency controllable ultrasonic knife will be suggested. The design and computation principles will be also derived. For this work, firstly, the characteristics of this ultrasonic knife will be analyzed by transmission line model equivalent circuit, and the free admittance characteristics and vibrational velocity distributions will be obtained. Secondly, we will design and make the frequency controllable electrical oscillator for driving this ultrasonic knife.

  • PDF

A fault location algorithm using iterative method at unbalance conditions for distribution feeder systems (불평형시 반복추정기법을 이용한 배전계통 고장점 표정 알고리즘)

  • Lee, D.S.;Jin, B.G.;Lee, S.J.;Choi, M.S.;Kang, S.H.;Ahn, B.S.;Yoon, N.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.121-123
    • /
    • 2001
  • This paper presents a fault location algorithm using iterative method at unbalance condition for distribution feeder systems. Distribution feeders include single phase and three phase laterals. The proposed algorithm achieves a high accuracy by continuously updating voltage and current phasor using the phase components and admittance load model.

  • PDF

Determining Method of Minimum-capacitance for Self-excited Induction Generator (자기 여자 유도 발전기의 최소 커패시턴스의 결정법)

  • Jin, Chung-Min;Jwa, Chong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.729-731
    • /
    • 2000
  • This paper presents a simple method for determining the minimum value of capacitance required for initiating self excitation in three-phase self-excited induction generator. Based on the steady-state equivalent circuit model, this paper presents simple and direct method to find the minimum capacitance requirement under R-L load. Using the loop impedance and nodal admittance. the minimum capacitance is determined by self excitation condition. These computed values can be used to predict practically the minimum value of the terminal voltage required for self-excitation. To maintain a constant terminal voltage, a method for determining the frequency, terminal capacitance, and exciting reactance is also described.

  • PDF

Electrical Charateristics of Step-down Piezoelectric Transformer

  • Shin Hoonbum;Ahn HyungKeun;Han Deuk-Young
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.47-51
    • /
    • 2001
  • In this paper, we have explained electrical characteristics of a step-down Rosen type piezoelectric transformer for AC-adapter. When the electric voltage is applied to the driving piezoelectric vibrator polarized in the longitudinal direction, then output voltage is generated at the generating piezoelectric vibrator polarized in the thickness direction due to the piezoelectric effects. From the piezoelectric direct and converse effects, symbolic expressions between the electric inputs and outputs of the step-down piezoelectric transformer have derived with an equivalent circuit model. With the symbolic expressions, load and frequency characteristics have discussed through simulation. Output voltage and current from a 11-layered and a 13-layered piezoelectric transformers were measured under the various conditions of loads and frequencies. First we measured resonant frequency from impedance curve and got equivalent impedance value of the piezoelectric transformer from admittance plot. It was shown from experiments that output voltage has increased and resonant frequency has changed according to various resistor loads. Output current has decreased inversely proportional to changing of loads. Moreover, the measured values of output voltage and current are well agreed with the simulated values of the proposed equivalent circuit model.

  • PDF

Design Analysis of Step-down Multilayer Piezoelectric Transformer

  • Hoonbum Shin;Hyungkeun Ahn;Han, Deuk-Young
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.139-144
    • /
    • 2003
  • In this paper, 11 and 13 layered step-down piezoelectric transformers were fabricated and their electrical characteristics have been analyzed for AC-adapter. When the voltage is applied to the driving piezoelectric vibrator polarized in the longitudinal direction, the output voltage is generated at the generating piezoelectric vibrator polarized in the thickness direction due to the piezoelectric effects. From the piezoelectric direct and converse effects, symbolic expressions between the electric inputs and outputs of the step-down piezoelectric transformer are derived with an equivalent circuit model. With those expressions, load and frequency characteristics are discussed through the simulations. Output voltage and current from a 11-layered and a 13-layered piezoelectric transformers were measured under the different load and frequency conditions. First we measured resonant frequency from impedance curve and got equivalent impedance value of the piezoelectric transformer from admittance plot. It was shown from experiments that output voltage increase s and resonant frequency changes according to the various resistor loads. Output current decreases inversely proportional to the change of loads. Moreover, the measured output voltage and current are well matched with the simulated results obtained from the proposed equivalent circuit model. Furthermore, a new step-down piezoelectric transformer has been suggested to Increase the output power based on a simulation result having a driving piezoelectric vibrator polarized thickness direction.

Coordinated Control of TCSC and SVC for System Damping Enhancement

  • So Ping Lam;Chu Yun Chung;Yu Tao
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.322-333
    • /
    • 2005
  • This paper proposes a combination of the Thyristor Controlled Series Capacitor (TCSC) and Static Var Compensator (SVC) installation for enhancing the damping performance of a power system. The developed scheme employs a damping controller which coordinates measurement signals with control signals to control the TCSC and SVC. The coordinated control method is based on the application of projective controls. Controller performance over a range of operating conditions is investigated through simulation studies on a single-machine infinite-bus power system. The linear analysis and nonlinear simulation results show that the proposed controller can significantly improve the damping performance of the power system and hence, increase its power transfer capabilities. In this paper, a current injection model of TCSC is developed and incorporated in the transmission system model. By using equivalent injected currents at terminal buses to simulate a TCSC no modification of the bus admittance matrix is required at each iteration.

Network Analysis and Design of Aperture-Coupled Cavity-Fed Microstrip Patch Antenna (개구면 결합 공진기 급전 마이크로스트립 패치 안테나의 회로망 해석 및 설계)

  • Shin Jong Woo;Kim Jeong Phill
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.93-102
    • /
    • 2004
  • This paper presents a general theory for the analysis of an aperture-coupled cavity-fed microstrip patch antenna to develop a simple but accurate equivalent circuit model. The developed equivalent circuit consists of ideal transformers, admittance elements, and transmission lines. These circuit element values are computed by applying the complex power concept, the Fourier transform and series representation, and the spectral-domain immittance approach. The input impedance of the antenna is calculated and compared with the published data. Good agreements validate the simplicity and accuracy of the developed equivalent circuit model.

Design of MTM Antennas using Equivalent Circuit Considering Radiation Loss (방사 손실 모델링을 이용한 MTM 안테나 설계)

  • Kim, Tack-Gyu;Lee, Bom-Son
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.1-7
    • /
    • 2008
  • In this paper, we propose a lossy MTM transmission line unit cell and retrieve the parameter values related with radiation effects. Based on this unit cell model, we plot dispersion diagrams and analyze resonance conditions. We also discuss the input impedance or admittance behavior when we terminate the load as open or short. Then, we examine the quality factor and return loss bandwidth. We also design a very compact unit cell antenna using the provided lossy MTM-TL model. The results based on EM simulations and measurements are shown to be in good agreement with those based on circuit simulation.

Equivalent Network Modeling of Slot-Coupled Microstripline to Waveguide Transition (슬롯 결합 마이크로스트립라인-도파관 천이기의 등가 회로 모델링)

  • Kim Won-Ho;Shin Jong-Woo;Kim Jeong-Phill
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.1005-1010
    • /
    • 2004
  • An analysis method of slot-coupled microstripline to waveguide transition is presented to developed a simple but accurate equivalent circuit model. The equivalent circuit consists of an ideal transformer, microstrip open stub, and admittance elements looking into a waveguide and a half space of feed side from a slot center. The related circuit element values are calculated by applying the reciprocity theorem, the Fourier transform and series representation, the complex power concept, and the spectral-domain immittance approach. The computed scattering parameters are compared with the measured, and good agreement validates the simplicity and accuracy of the proposed equivalent circuit model.