• 제목/요약/키워드: Adleman-Manders-Miller algorithm

검색결과 2건 처리시간 0.018초

IMPROVING THE POCKLINGTON AND PADRÓ-SÁEZ CUBE ROOT ALGORITHM

  • Cho, Gook Hwa;Lee, Hyang-Sook
    • 대한수학회보
    • /
    • 제56권2호
    • /
    • pp.277-283
    • /
    • 2019
  • In this paper, we present a cube root algorithm using a recurrence relation. Additionally, we compare the implementations of the Pocklington and $Padr{\acute{o}}-S{\acute{a}}ez$ algorithm with the Adleman-Manders-Miller algorithm. With the recurrence relations, we improve the Pocklington and $Padr{\acute{o}}-S{\acute{a}}ez$ algorithm by using a smaller base for exponentiation. Our method can reduce the average number of ${\mathbb{F}}_q$ multiplications.

TRACE EXPRESSION OF r-TH ROOT OVER FINITE FIELD

  • Cho, Gook Hwa;Koo, Namhun;Kwon, Soonhak
    • 대한수학회지
    • /
    • 제57권4호
    • /
    • pp.1019-1030
    • /
    • 2020
  • Efficient computation of r-th root in 𝔽q has many applications in computational number theory and many other related areas. We present a new r-th root formula which generalizes Müller's result on square root, and which provides a possible improvement of the Cipolla-Lehmer type algorithms for general case. More precisely, for given r-th power c ∈ 𝔽q, we show that there exists α ∈ 𝔽qr such that $$Tr{\left(\begin{array}{cccc}{{\alpha}^{{\frac{({\sum}_{i=0}^{r-1}\;q^i)-r}{r^2}}}\atop{\text{ }}}\end{array}\right)}^r=c,$$ where $Tr({\alpha})={\alpha}+{\alpha}^q+{\alpha}^{q^2}+{\cdots}+{\alpha}^{q^{r-1}}$ and α is a root of certain irreducible polynomial of degree r over 𝔽q.