• 제목/요약/키워드: Adjoint model

검색결과 53건 처리시간 0.022초

DSR 연산자에 의한 파동장 외삽을 이용한 중합전 데이터밍 (Prestack Datuming by Wavefield Depth Extrapolation using the DSR Equation)

  • 지준
    • 지구물리와물리탐사
    • /
    • 제2권1호
    • /
    • pp.54-62
    • /
    • 1999
  • 본 논문은 파동장의 심도방향으로의 외삽(extrapolation)을 사용한 중합전 데이터밍 기법을 소개한다. 데이터밍 알고리즘의 유도를 위해, 우선 평면에 정의되어 있는 파동장을 임의의 굴곡을 갖는 면으로 외삽을 수행하는 모델링 연산자를 대수학적으로 구한 후, 이러한 모델링 연산자와 어드조인트(adjoint)관계에 있는 연산자를 대수학적으로 구하여 데이터밍 연산자를 얻게된다. 본 논문에서 사용된 취합전 모델링 연산자는 이미 널리 쓰이고 있는 중합전 마이그레이션(prestack migration) 중의 하나인 survey sinking 방법의 모델링에 해당하는 double square root(DSR)식이 사용되었다.

  • PDF

Sensitivity Analysis for the Navier-Stokes Equations with Two-Equation Turbulence Models

  • 김창성;김종암;노오현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.66-72
    • /
    • 2000
  • Aerodynamic sensitivity analysis is performed for the Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method and a direct differentiation method respectively. Like the mean flow equations, the turbulence model equations are also hand-differentiated to accurately calculate the sensitivity derivatives of flow quantities with respect to design variables in turbulent viscous flows. Both the direct differentiation code and the adjoint variable code adopt the same time integration scheme with the flow solver to efficiently solve the differentiated equations. The sensitivity codes are then compared with the flow solver in terms of solution accuracy, computing time and computer memory requirements. The sensitivity derivatives obtained from the sensitivity codes with different turbulence models are compared with each other. Using two-equation turbulence models, it is observed that a usual assumption of constant turbulent eddy viscosity in adjoint methods may lead to seriously inaccurate results in highly turbulent flows.

  • PDF

수반모형을 이용한 한반도 남동지역의 오존 전구물질의 오존 생성 민감도에 관한 수치연구 (Numerical Study on the Ozone Formation Sensitivity of Precursors Using Adjoint Model around the South-eastern Area of the Korean Peninsula)

  • 박순영;이순환;이화운;김동혁
    • 한국지구과학회지
    • /
    • 제34권7호
    • /
    • pp.669-680
    • /
    • 2013
  • 한반도 동남 지역에서 고농도 오존이 발생한 사례에 대해 $NO_x$에 대한 오존의 수반민감도를 살펴보았다. 사례일에 지배적이었던 국지 순환과 고농도 오존을 모의하기 위해 WRF-CMAQ 모델을 사용하였다. 수반민감도 분석을 위해 CMAQ의 수반 모델을 적용하였다. 본 연구의 목적은 고농도 오존에 주변지역이 미친 영향을 살펴본 수용지 중심의 민감도 분석이다. 또한, 행정 구역별 기여도를 정량적으로 산정하였는데, 대구를 수용지로 하는 민감도 분석 결과 영향지역은 대구에 인접하여 포항으로 이어지는 영역과 남동쪽으로 떨어진 넓은 지역으로 나타났다. 첫 번째 영역은 고농도 사례일 당일에 배출된 $NO_x$의 민감도가 주로 나타났고 두 번째 영역은 전 날 배출에 의한 영향이었다. 반면, 부산을 수용지로 한 경우 사례일 당일 주간의 해풍의 영향으로 같은 날의 $NO_x$ 배출 효과 보다는 전 날 배출되었던 농도에 대한 민감도가 더 중요하였다. 민감도 영향지역에 대한 단면도 분석 결과 지표부근의 $NO_x$ 수송과 함께 상층에서 이류되는 영향도 중요하였다.

Topology optimization for thin plate on elastic foundations by using multi-material

  • Banh, Thien Thanh;Shin, Soomi;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.177-184
    • /
    • 2018
  • This study contributes to evaluate multiphase topology optimization design of plate-like structures on elastic foundations by using classic plate theory. Multi-material optimal topology and shape are produced as an alternative to provide reasonable material assignments based on stress distributions. Multi-material topology optimization problem is solved through an alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to thin plate potential strain energy are derived in terms of multiphase design variables and Winkler-Pasternak parameters considering elastic foundation to apply to the current topology optimization. Numerical examples verify efficiency and diversity of the present topology optimization method of elastic thin plates depending on multiple materials and Winkler-Pasternak parameters with the same amount of volume fraction and total structural volume.

NURBS를 이용한 S형 천음속 흡입관 최적 설계 (OPTIMAL SHAPE DESIGN OF A S-SHAPED SUBSONIC INTAKE USING NURBS)

  • 이병준;김종암
    • 한국전산유체공학회지
    • /
    • 제11권1호
    • /
    • pp.57-66
    • /
    • 2006
  • An optimal shape design approach is presented for a subsonic S-shaped intake using aerodynamic sensitivity analysis. Two-equation turbulence model is employed to capture strong counter vortices in the S-shaped duct more precisely. Sensitivity analysis is performed for the three-dimensional Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method For code validation, the result of the flow solver is compared with experiment data and other computational results of bench marking test. To study the influence oj turbulence models and grid refinement on the duct flow analysis, the results from several turbulence models are compared with one another and the minimum number of grid points, which can yield an accurate solution is investigated The adjoint variable code is validated by comparing the complex step derivative results. To realize a sufficient and flexible design space, NURBS equations are introduced as a geometric representation and a new grid modification technique, Least Square NURBS Grid Approximation is applied With the verified flow solver, the sensitivity analysis code and the geometric modification technique, the optimization of S-shaped intake is carried out and the enhancement of overall intake performance is achieved The designed S-shaped duct is tested in several off-design conditions to confirm the robustness of the current design approach. As a result, the capability and the efficiency of the present design tools are successfully demonstrated in three-dimensional highly turbulent internal flow design and off-design conditions.

Improvement and verification of the DeCART code for HTGR core physics analysis

  • Cho, Jin Young;Han, Tae Young;Park, Ho Jin;Hong, Ser Gi;Lee, Hyun Chul
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.13-30
    • /
    • 2019
  • This paper presents the recent improvements in the DeCART code for HTGR analysis. A new 190-group DeCART cross-section library based on ENDF/B-VII.0 was generated using the KAERI library processing system for HTGR. Two methods for the eigen-mode adjoint flux calculation were implemented. An azimuthal angle discretization method based on the Gaussian quadrature was implemented to reduce the error from the azimuthal angle discretization. A two-level parallelization using MPI and OpenMP was adopted for massive parallel computations. A quadratic depletion solver was implemented to reduce the error involved in the Gd depletion. A module to generate equivalent group constants was implemented for the nodal codes. The capabilities of the DeCART code were improved for geometry handling including an approximate treatment of a cylindrical outer boundary, an explicit border model, the R-G-B checker-board model, and a super-cell model for a hexagonal geometry. The newly improved and implemented functionalities were verified against various numerical benchmarks such as OECD/MHTGR-350 benchmark phase III problems, two-dimensional high temperature gas cooled reactor benchmark problems derived from the MHTGR-350 reference design, and numerical benchmark problems based on the compact nuclear power source experiment by comparing the DeCART solutions with the Monte-Carlo reference solutions obtained using the McCARD code.

Air-Sea Heat Flux Estimation by Ocean Data Assimilation Using Satellite and TOGA/TAO Buoy Data

  • Awaji, Toshiyuki;Ishikawa, Yoichi;Iida, Masatora;In, Teiji
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.221-226
    • /
    • 1999
  • A data assimilation system for a 1-dimensional mixed layer model has been constructed using the adjoint method. The classical adjoint method does not work well for the mixed layer variabilities due to the occurrence of spikes in the gradient of the cost function. To solve this problem, the two techniques of scaling the cost function and optimization in the frequency space are used. As a result, the heat flux can be reliably estimated with an accuracy of 8Wm$^{-2}$ rms error in the identical twin experiments. We then applied this system to the tropical Pacific TOGA-TAO buoy data. The air-sea heat flux as well as the mixed layer variability were estimated in close approximation to the buoy data, particularly on time scales longer than the seasonal one.

  • PDF

Topology optimization of multiphase elastic plates with Reissner-Mindlin plate theory

  • Banh, Thanh T.;Lee, Dongkyu;Lee, Jaehong;Kang, Joowon;Shin, Soomi
    • Smart Structures and Systems
    • /
    • 제22권3호
    • /
    • pp.249-257
    • /
    • 2018
  • This study contributes to evaluate multiphase topology optimization design of plate-like elastic structures with constant thickness and Reissner-Mindlin plate theory. Stiffness and adjoint sensitivity formulations linked to Reissner-Mindlin plate potential energy of bending and shear are derived in terms of multiphase design variables. Multiphase optimization problem is solved through alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Numerical examples verify efficiency and diversity of the present topology optimization method of Reissner-Mindlin elastic plates depending on multiphase and Poisson's ratio.

Simultaneous identification of moving loads and structural damage by adjoint variable

  • Abbasnia, Reza;Mirzaee, Akbar;Shayanfar, Mohsenali
    • Structural Engineering and Mechanics
    • /
    • 제56권5호
    • /
    • pp.871-897
    • /
    • 2015
  • This paper presents a novel method based on sensitivity of structural response for identifying both the system parameters and input excitation force of a bridge. This method, referred to as "Adjoint Variable Method", is a sensitivity-based finite element model updating method. The computational cost of sensitivity analyses is the main concern associated with damage detection by these methods. The main advantage of proposed method is inclusion of an analytical method to augment the accuracy and speed of the solution. The reliable performance of the method to precisely indentify the location and intensity of all types of predetermined single, multiple and random damages over the whole domain of moving vehicle speed is shown. A comparison study is also carried out to demonstrate the relative effectiveness and upgraded performance of the proposed method in comparison to the similar ordinary sensitivity analysis methods. Moreover, various sources of error including the effects of noise and primary errors on the numerical stability of the proposed method are discussed.