• Title/Summary/Keyword: Adjoint Formulation

Search Result 32, Processing Time 0.015 seconds

Topology Optimization for Large-displacement Compliant Mechanisms Using Element Free Galerkin Method

  • Du, Yixian;Chen, Liping
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • This paper presents a topology optimization approach using element-free Galerkin method (EFGM) for the optimal design of compliant mechanisms with geometrically non-linearity. Meshless method has an advantage over the finite element method(FEM) because it is more capable of handling large deformation resulted from geometrical nonlinearity. Therefore, in this paper, EFGM is employed to discretize the governing equations and the bulk density field. The sensitivity analysis of the optimization problem is performed by incorporating the adjoint approach with the meshless method. The Lagrange multipliers method adjusted for imposition of both the concentrated and continuous essential boundary conditions in the EFGM is proposed in details. The optimization mathematical formulation is developed to convert the multi-criteria problem to an equivalent single-objective problem. The popularly applied interpolation scheme, solid isotropic material with penalization (SIMP), is used to indicate the dependence of material property upon on pseudo densities discretized to the integration points. A well studied numerical example has been applied to demonstrate the proposed approach works very well and the non-linear EFGM can obtain the better topologies than the linear EFGM to design large-displacement compliant mechanisms.

Shape Design Sensitivity Analysis of Axisymmetric Thermal Conducting Solids Using Boundary Integral Equations (경계적분방정식을 이용한 축대칭 열전도 고체의 형상설계민감도 해석)

  • 이부윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.141-152
    • /
    • 1993
  • A generalized method is presented for shape design sensitivity analysis of axisymmetric thermal conducting solids. The shape sensitivity formula of a general performance functional arising in shape optimal design problem is derived using the material derivative concept and the adjoint variable method. The method for deriving the formula is based on standard axisymmetric boundary integral equation formulation. It is then applied to obtain the sensitivity formulas for temperature and heat flux constraints imposed over a small segment of the boundary. To show the accuracy of the sensitivity analysis, numerical implementations are done for three examples. Sensitivities calculated by the presented method are compared with analytic sensitivities for two examples with analytic solutions, and compared with sensitivies by finite difference for a cooling fin example.