• 제목/요약/키워드: Adjacent ground excavation

검색결과 135건 처리시간 0.023초

사고사례 분석을 통한 흙막이 굴착공사 안전관리 개선방안 연구 (A Study for Safety Management on Ground Excavation by Analysis of Accident Events)

  • 성주현;정수형;신주열
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권6호
    • /
    • pp.175-183
    • /
    • 2011
  • 우리나라 지반공학 기술의 발달로 지반굴착 공사가 대규모로 수행되고 있으나, 최근 지반굴착시 공사현장 또는 인접구조물 시설물에 직,간접적인 피해를 유발하는 사고가 빈번히 발생하고 있다. 특히 도심지의 지하터널, 도시철도 역사, 대규모 상업시설, 초고층 빌딩의 기초 공사, 대규모 단지의 재개발 등 인접한 곳에 주거시설이나 상업시설이 밀집해 있는 곳에서의 지반굴착 사고가 빈번히 발생하고 있어 경제적인 손실 뿐 아니라 인명피해가 발생하여 사회적인 비용이 급속히 증가하고 있는 실정이다. 따라서 빈번히 발생하는 흙막이 굴착관련 사고를 방지하기 위해서는 여러 유형의 붕괴사고의 원인에 대한 분석이 필요하다. 본 고에서는 최근 발생한 흙막이 굴착공사로 인한 다수의 사고 및 인접시설물에 영향을 끼친 사례를 수집, 분석을 수행하여 사고발생 원인에 대하여 고찰과 개선방안을 제안하였다.

A parametric study of settlement and load transfer mechanism of piled raft due to adjacent excavation using 3D finite element analysis

  • Karira, Hemu;Kumar, Aneel;Hussain Ali, Tauha;Mangnejo, Dildar Ali;Mangi, Naeem
    • Geomechanics and Engineering
    • /
    • 제30권2호
    • /
    • pp.169-185
    • /
    • 2022
  • The urbanization and increasing rate of population demands effective means of transportation system (basement and tunnels) as well as high-rise building (resting on piled foundation) for accommodation. Therefore, it unavoidable to construct basements (i.e., excavation) nearby piled foundation. Since the basement excavation inevitably induces soil movement and stress changes in the ground, it may cause differential settlements to nearby piled raft foundation. To understand settlement and load transfer mechanism in the piled raft due to excavation-induced stress release, numerical parametric studies are carried out in this study. The effects of excavation depths (i.e., formation level) relative to piled raft were investigated by simulating the excavation near the pile shaft (i.e., He/Lp=0.67), next to (He/Lp=1.00) and below the pile toe (He/Lp=1.33). In addition, effects of sand density and raft fixity condition were investigated. The computed results have revealed that the induced settlement, tilting, pile lateral movement and load transfer mechanism in the piled raft depends upon the embedded depth of the diaphragm wall. Additional settlement of the piled raft due to excavation can be account for apparent loss of load carrying capacity of the piled raft (ALPC). The highest apparent loss of piled raft capacity ALPC (on the account of induced piled raft settlement) of 50% was calculated in in case of He/Lp = 1.33. Furthermore, the induced settlement decreased with increasing the relative density from 30% to 90%. On the contrary, the tilting of the raft increases in denser ground. The larger bending moment and lateral force was induced at the piled heads in fixed and pinned raft condition.

근접한 흙막이벽체에 가하는 선행하중의 영향을 받는 상재하중 재하 터널의 안정 (Stability of A Surcharged Tunnel under the Effect of Pre-Loading on the Adjacent Braced Wall)

  • 김일;이상덕
    • 한국재난정보학회 논문집
    • /
    • 제4권2호
    • /
    • pp.10-27
    • /
    • 2008
  • When the ground is excavated adjacent to the existing tunnel, which is loaded by the surcharge on the ground surface, the tunnel stability would be very sensitive to the deformation of the ground induced by the horizontal displacement of braced wall. The stability of the existing surcharged tunnel could be controlled by pre-loading on the braced wall. In this paper, it was investigated, if it would be possible to keep the existing surcharged tunnel stable by preventing the horizontal displacement of a braced wall by imposing the pre-loading during the ground excavation. For this purpose, large scale model tests were performed in a scale 1/10 at the test pit which was 2.0m in width and 6.0m in height and 4.0m in length. Isotropic test ground was constructed homogeneously by wet sand. Model tunnel was constructed in the test ground. Surcharge was loaded on the ground surface above the tunnel. During the tests, the behavior of model tunnel and model braced wall was measured. Numerical analyses were also performed in the same condition as the tests. And their results were compared to that of the model tests. Consequently, the effect of a surcharge could be compensated by imposing the pre-loading on the braced wall. The existing tunnel and the braced wall could be kept stable by preventing the horizontal displacement of the braced wall through pre-loading, although the tunnel is surcharged.

  • PDF

연직 불연속면이 존재하는 얕은 심도의 사질토 지반에서 2-arch 터널 단계별 굴착에 따른 하중전이에 관한 실험적연구 (An experimental study on the load transfer machanism of shallow 2-arch tunnel excavation sequence with vertical discontinuity planes in sandy ground)

  • 오범진;이상덕
    • 한국터널지하공간학회 논문집
    • /
    • 제13권3호
    • /
    • pp.215-231
    • /
    • 2011
  • 본 논문에서는 연직 불연속면을 포함하는 지반에서 얕은 심도 2-arch 터널 굴착에 따른 거동특성을 실험적으로 연구하였으며, 2-arch 터널 굴착에 따른 필러부 하중전이 특성을 관찰하였다. 연직 불연속면의 위치를 변화시키고, 2-arch터널 시공단계별로 모형실험을 수행하였다. 실험결과, 2-arch 터널 굴착에 따른 이완하중이 불연속면이 위치한 곳에 집중되었고, 불연속면에 차단되어 불연속면을 넘어서까지 하중이 전이되지는 않았다. 또한 인접한 터널의 하반을 굴착할 때보다 상반을 굴착할 때에 필러부와 지반변형에 더 큰 영향을 미치는 것으로 나타났다.

토목섬유로 보강한 지반앵커를 사용한 도심지 굴착시공사례 (A case study on the excavation work using the reinforced ground anchor with geosynthetics in urban area)

  • 임강호;오정환;김태섭;최성일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.902-911
    • /
    • 2009
  • There appeared many difficulties due to various construction factors during the recent construction adjacent to the housing for the aging. In particular, the study is going to summarize and overview the selection procedure and construction details of the excavation engineering of this site, which could ensure workability and economic efficiency through the construction of a shorter anchor than the length of the existing anchor with a minimal marginal space without invading the nearby private land.

  • PDF

Analysis of pile group behaviour to adjacent tunnelling considering ground reinforcement conditions with assessment of stability of superstructures

  • Young-Jin Jeon;Cheol-Ju Lee
    • Geomechanics and Engineering
    • /
    • 제33권5호
    • /
    • pp.463-475
    • /
    • 2023
  • Tunnel construction activity, conducted mainly in mountains and within urban centres, causes soil settlement, thus requiring the relevant management of slopes and structures as well as evaluations of risk and stability. Accordingly, in this study we performed a three-dimensional finite element analysis to examine the behaviour of piles and pile cap stability when a tunnel passes near the bottom of the foundation of a pile group connected by a pile cap. We examined the results via numerical analysis considering different conditions for reinforcement of the ground between the tunnel and the pile foundation. The numerical analysis assessed the angular distortion of the pile cap, pile settlement, axial force, shear stress, relative displacement, and volume loss due to tunnel excavation, and pile cap stability was evaluated based on Son and Cording's evaluation criterion for damage to adjacent structures. The pile located closest to the tunnel under the condition of no ground reinforcement exhibited pile head settlement approximately 70% greater than that of the pile located farthest from the tunnel under the condition of greatest ground reinforcement. Additionally, pile head settlement was greatest when the largest volume loss occurred, being approximately 18% greater than pile head settlement under the condition having the smallest volume loss. This paper closely examines the main factors influencing the behaviour of a pile group connected by a pile cap for three ground reinforcement conditions and presents an evaluation of pile cap stability.

구조물 및 시설물 인접 구릉지의 암반굴착 발파설계 (Blast Design of Hilly Rock Excavation Adjacent to Structures and Facilities)

  • 류창하;선우춘;신희순;정소걸;최병희
    • 터널과지하공간
    • /
    • 제4권1호
    • /
    • pp.38-46
    • /
    • 1994
  • This paper concerns the design of blasts adjacent to structures and facilities. In order to investigate the site characteristics, measurements of in-situ wave propagation and laboratory tests of rock cores taken from the boreholes were carried out. Effects of rock media and delay intervals on ground vibration levels were identified from over sixty measurements of three times of test blasts. For practical use in the field, an empirical propagation equation was derived so as to reflect the characteristics of rock media and delay effects. Safe limits of vibration level for structures were conservatively established based on various suggested criteria. Safe limits for facilities were adopted so that vibration levels induced by blasting should not exceed the allowable limits specified in the manufacturer's installation condition. Suggested were blast pattern and operation to enhance the rock fracturing and to reduce the ground vibration levels under the restricted conditions.

  • PDF

굴착현장 모니터링 시스템을 위한 적응적인 듀티사이클링 제어 기법 (Control Method of Adaptive Duty-cycling for Monitoring System in Excavations)

  • 김태식;민홍;정진만
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.141-146
    • /
    • 2016
  • 굴착 현장 인접 구조물의 안정성을 확보하기 위해 현장 주변 지반의 변형을 모니터링하는 것은 중요하다. 지반특성과 굴착 깊이에 따라 굴착 중 벽체의 변형이 다르게 발생하며, 이를 정확하게 예측하는 것은 불가능하다. 따라서 굴착지지 벽체 후방에 인클리노미터를 탑재한 센서를 설치하여 이를 모니터링한다. 본 논문에서는 굴착과정에서 벽체의 변형을 모니터링하기 위해 무선 센서 노드를 사용한 모니터링 시스템을 설계하였다. 또한 배터리 기반의 센서 노드의 수명을 연장하기 위해 굴착 진행 과정과 인클리노미터의 계측 값에 따라 위험도 등급을 설정하고 해당 등급에 따라 활성/휴면 구간을 적응적으로 변경하는 기법을 제안하였다. 지연시간 분석을 통해 제안기법은 굴착현장과 같이 위험도가 다른 데이터가 동적으로 발생하는 환경에서 고정 듀티사이클링 기법에 비해 지연시간을 크게 줄일 수 있음을 확인한다.

불연속면을 포함한 사질토 지반에서 터널 굴착에 따른 하중전이 (Load transfer mechanism due to tunnel excavation in the jointed sandy ground)

  • 이상덕;김양운
    • 한국터널지하공간학회 논문집
    • /
    • 제5권3호
    • /
    • pp.217-226
    • /
    • 2003
  • 본 연구에서는 활동성 불연속면을 포함하고 있는 모래지반에 터널을 굴착할 때에 터널 주변의 원지반에 발생되는 아칭을 규명하기 위하여 터널 상부의 토피고와 불연속면의 위치 및 각도를 변화시켜가며 모형실험을 수행하였다. 모형실험기의 중앙에 수직으로 이동이 가능한 가동판을 설치하고 모래지반 조성 후에 가동판을 강하시켜서 터널 굴착을 모형화 하였고, 토조의 바닥판에 로드셀을 부착하여, 아칭에 의한 하중전이를 측정하였다. 굴착에 의한 지표면의 침하거동은 변위측정센서를 지표면에 설치하여 측정하였으며, 실험 중에 연속사진촬영을 실시하고 지반조성시 일정한 간격으로 설치한 측점의 움직임을 관측하여 굴착에 의한 지반이완형태를 측정하였다. 본 연구 결과 터널굴착시 불연속면의 각도와 위치, 그리고 터널 상부의 토피고에 따라서 하중전이 형태와 이완영역이 변화하는 것을 확인하였으며 지반의 이완영역이 터널과 인접해 있는 불연속면을 따라 주변지반으로 점차 확대되어 가는 것을 알 수 있었다.

  • PDF

Structure damage estimation due to tunnel excavation based on indoor model test

  • Nam, Kyoungmin;Kim, Jungjoo;Kwak, Dongyoup;Rehman, Hafeezur;Yoo, Hankyu
    • Geomechanics and Engineering
    • /
    • 제21권2호
    • /
    • pp.95-102
    • /
    • 2020
  • Population concentration in urban areas has led traffic management a central issue. To mitigate traffic congestions, the government has planned to construct large-cross-section tunnels deep underground. This study focuses on estimating the damage caused to frame structures owing to tunnel excavation. When constructing a tunnel network deep underground, it is necessary to divide the main tunnel and connect the divergence tunnel to the ground surface. Ground settlement is caused by excavation of the adjacent divergence tunnel. Therefore, predicting ground settlement using diverse variables is necessary before performing damage estimation. We used the volume loss and cover-tunnel diameter ratio as the variables in this study. Applying the ground settlement values to the settlement induction device, we measured the extent of damage to frame structures due to displacement at specific points. The vertical and horizontal displacements that occur at these points were measured using preattached LVDT (Linear variable differential transformer), and the lateral strain and angular distortion were calculated using these displacements. The lateral strain and angular distortion are key parameters for structural damage estimation. A damage assessment chart comprises the "Negligible", "Very Slight Damage", "Slight Damage", "Moderate to Severe Damage", and "Severe to Very Severe Damage" categories was developed. This table was applied to steel frame and concrete frame structures for comparison.