• Title/Summary/Keyword: Adjacent Pixels

Search Result 154, Processing Time 0.029 seconds

Depth-map Preprocessing Algorithm Using Two Step Boundary Detection for Boundary Noise Removal (경계 잡음 제거를 위한 2단계 경계 탐색 기반의 깊이지도 전처리 알고리즘)

  • Pak, Young-Gil;Kim, Jun-Ho;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.12
    • /
    • pp.555-564
    • /
    • 2014
  • The boundary noise in image syntheses using DIBR consists of noisy pixels that are separated from foreground objects into background region. It is generated mainly by edge misalignment between the reference image and depth map or blurred edge in the reference image. Since hole areas are generally filled with neighboring pixels, boundary noise adjacent to the hole is the main cause of quality degradation in synthesized images. To solve this problem, a new boundary noise removal algorithm using a preprocessing of the depth map is proposed in this paper. The most common way to eliminate boundary noise caused by boundary misalignment is to modify depth map so that the boundary of the depth map can be matched to that of the reference image. Most conventional methods, however, show poor performances of boundary detection especially in blurred edge, because they are based on a simple boundary search algorithm which exploits signal gradient. In the proposed method, a two-step hierarchical approach for boundary detection is adopted which enables effective boundary detection between the transition and background regions. Experimental results show that the proposed method outperforms conventional ones subjectively and objectively.

Correction of Rotated Objects in Medical Images Using the Mojette Transform (모젯 변환을 이용한 의료 영상의 회전 물체 보정)

  • Jung, Hyang-Mi;Kim, Ji-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1341-1348
    • /
    • 2012
  • In this paper, an efficient scheme for correcting rotated objects in medical images using the Mojette transform is presented. The Mojette transform is a kind of discrete Radon transform, where the transform domain is represented by a set of projections. The Mojette transform currently studied in the image compression area is modified for detecting the rotation angle of objects in medical images. First, in order to find accurate rotation angle, the projection value in the Mojette transform is determined by using pixels on the projection line and in addition the linear interpolation of pixels adjacent to the line. Second, at each projection angle, only one projection is implemented for reducing the amount of the calculation in the process of the Mojette transform. Finally, the projection in the Mojette transform is carried out at the predetermined ROI(Region Of Interest) at which the objects are not cropped or added by rotating the image. The simulation results show that the proposed method has good performance for correcting the rotation angle in medical images.

Color Image Encryption using MLCA and Transformation of Coordinates (MLCA와 좌표변환을 이용한 컬러 영상의 암호화)

  • Yun, Jae-Sik;Nam, Tae-Hee;Cho, Sung-Jin;Kim, Seok-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1469-1475
    • /
    • 2010
  • This paper presents a problem of existing encryption methods using pseudo-random numbers based on MLCA or complemented MLCA and proposes a method to resolve this problem. The existing encryption methods have a problem which the edge of original image appear on encrypted image because the image have color similarity of adjacent pixels. In this proposed method, we transform the value and spatial coordinates of all pixels by using pseudo-random numbers based on MLCA. This method can resolve the problem of existing methods and improve the level of encryption by encrypting pixel coordinates and pixel values of original image. The effectiveness of the proposed method is proved by conducting histogram and key space analysis.

Detection of Moving Objects using Depth Frame Data of 3D Sensor (3D센서의 Depth frame 데이터를 이용한 이동물체 감지)

  • Lee, Seong-Ho;Han, Kyong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.243-248
    • /
    • 2014
  • This study presents an investigation into the ways to detect the areas of object movement with Kinect's Depth Frame, which is capable of receiving 3D information regardless of external light sources. Applied to remove noises along the boundaries of objects among the depth information received from sensors were the blurring technique for the x and y coordinates of pixels and the frequency filter for the z coordinate. In addition, a clustering filter was applied according to the changing amounts of adjacent pixels to extract the areas of moving objects. It was also designed to detect fast movements above the standard according to filter settings, being applicable to mobile robots. Detected movements can be applied to security systems when being delivered to distant places via a network and can also be expanded to large-scale data through concerned information.

Recovering Corrupted Motion Vectors using Discontinuity Features of an Image (영상의 불연속 특성을 이용한 손상된 움직임 벡터 복원 기법)

  • 손남례;이귀상
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.3
    • /
    • pp.298-304
    • /
    • 2004
  • In transmitting a compressed video bit-stream over Internet, a packet loss causes an error propagation in both spatial and temporal domain, which in turn leads to a severe degradation in image quality. In this paper, a new error concealment algorithm is proposed to repair damaged portions of the video frames in the receiver. Conventional BMA(Boundary Matching Algorithm) assumes that the pixels on the boundary of the missing block and its neighboring blocks are very similar, but has no consideration of edges t)r discontinuity across the boundary. In our approach, the edges are detected across the boundary of the lost or erroneous block. Once the edges are detected and the orientation of each edge is found, only the pixel difference along the expected edges across the boundary is measured instead of calculating differences between all adjacent pixels on the boundary. Therefore, the proposed approach needs very few computations and the experiment shows an improvement of the performance over the conventional BMA in terms of both subjective and objective quality of video sequences.

Image Recognition Based on Nonlinear Equalization and Multidimensional Intensity Variation (비선형 평활화와 다차원의 명암변화에 기반을 둔 영상인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.504-511
    • /
    • 2014
  • This paper presents a hybrid recognition method, which is based on the nonlinear histogram equalization and the multidimensional intensity variation of an images. The nonlinear histogram equalization based on a adaptively modified function is applied to improve the quality by adjusting the brightness of the image. The multidimensional intensity variation by considering the a extent of 4-step changes in brightness between the adjacent pixels is also applied to reflect accurately the attributes of image. The statistical correlation that is measured by the normalized cross-correlation(NCC) coefficient, is applied to comprehensively measure the similarity between the images. The NCC is considered by the intensity variation of each 2-direction(x-axis and y-axis) image. The proposed method has been applied to the problem for recognizing the 50-face images of 40*40 pixels. The experimental results show that the proposed method has a superior recognition performances to the method without performing the histogram equalization, or the linear histogram equalization, respectively.

A New Shadow Removal Method using Color Information and History Data (물체 색정보와 예전 제거기록을 활용하는 새로운 그림자 제거방법)

  • Choi Hye-Seung;Wang Akun;Soh Young-Sung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.395-402
    • /
    • 2005
  • Object extraction is needed to track objects in color traffic image sequence. To extract objects, we use background differencing method based on MOG(Mixture of Gaussians). In extracted objects, shadows may be included. Due to shadows, we may not find exact location of objects and sometimes we find adjacent objects are glued together. Many methods have been proposed to remove shadows. Conventional methods usually assume that color and texture information are preserved under the shadow. Thus these methods do not work well if these assumptions do not hold. In this paper, we propose a new robust shadow removal method which works well in those situations. First we extract shadow pixel candidates by analysing color information and compute the ratio of shadow pixel candidates over the total number of Pixels. W the ratio is reasonable, we remove shadow candidate Pixels and if not, we use data in history array containing Previous removal records. We applied the method to real color traffic image sequences and obtained good results.

Color Image Encryption using MLCA and Bit-oriented operation (MLCA와 비트 단위 연산을 이용한 컬러 영상의 암호화)

  • Yun, Jae-Sik;Nam, Tae-Hee;Cho, Sung-Jin;Kim, Seok-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.141-143
    • /
    • 2010
  • This paper presents a problem of the existing encryption method using MLCA or complemented MLCA and propose a method to resolve this problem. With the existing encryption methods, the result of encryption is affected by the original image because of spatial redundancy of adjacent pixels. In this proposed method, we transform spatial coordinates of all pixels into encrypted coordinates. We also encrypt color values of the original image by operating XOR with pseudo-random numbers. This can solve the problem of existing methods and improve the levels of encryption by randomly encrypting pixel coordinates and pixel values of original image. The effectiveness of the proposed method is proved by conducting histogram, key space analysis.

  • PDF

Correction of Rotated Frames in Video Sequences Using Modified Mojette Transform (변형된 모젯 변환을 이용한 동영상에서의 회전 프레임 보정)

  • Kim, Ji-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.1
    • /
    • pp.42-49
    • /
    • 2013
  • The camera motion is accompanied with the translation and/or the rotation of objects in frames of a video sequence. An unnecessary rotation of objects declines the quality of the moving pictures and in addition is a primary cause of the viewers' fatigue. In this paper, a novel method for correcting rotated frames in video sequences is presented, where the modified Mojette transform is applied to the motion-compensated area in each frame. The Mojette transform is one of discrete Radon transforms, and is modified for correcting the rotated frames as follows. First, the bin values in the Mojette transform are determined by using pixels on the projection line and the interpolation of pixels adjacent to the line. Second, the bin values are calculated only at some area determined by the motion estimation between current and reference frames. Finally, only one bin at each projection is computed for reducing the amount of the calculation in the Mojette transform. Through the simulation carried out on various test video sequences, it is shown that the proposed scheme has good performance for correcting the rotation of frames in moving pictures.

Development of Cloud Amount Calculation Algorithm using MTSAT-1R Satellite Data (MTSAT-1R 정지기상위성 자료를 이용한 전운량 산출 알고리즘 개발)

  • Lee, Byung-Il;Kim, Yoonjae;Chung, Chu-Yong;Lee, Sang-Hee;Oh, Sung-Nam
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.125-133
    • /
    • 2007
  • Cloud amount calculation algorithm was developed using MTSAT-1R satellite data. The cloud amount is retrieved at 5 km ${\times}$ 5 km over the Korean Peninsula and adjacent sea area. The algorithm consists of three steps that are cloud detection, cloud type classification, and cloud amount calculation. At the first step, dynamic thresholds method was applied for detecting cloud pixels. For using objective thresholds in the algorithm, sensitivity test was performed for TBB and Albedo variation with temporal and spatial change. Detected cloud cover was classified into 3 cloud types (low-level cloud, cirrus or uncertain cloud, and cumulonimbus type high-level cloud) in second step. Finally, cloud amount was calculated by the integration method of the steradian angle of each cloud pixel over $3^{\circ}$ elevation. Calculated cloud amount was compared with measured cloud amount with eye at surface observatory for the validation. Bias, RMSE, and correlation coefficient were 0.4, 1.8, and 0.8, respectively. Validation results indicated that calculated cloud amount was a little higher than measured cloud amount but correlation was considerably high. Since calculated cloud amount has 5km ${\times}$ 5km resolution over Korean Peninsula and adjacent sea area, the satellite-driven cloud amount could show the possibility which overcomes the temporal and spatial limitation of measured cloud amount with eye at surface observatory.