• Title/Summary/Keyword: Adjacent Pixels

Search Result 154, Processing Time 0.029 seconds

Software development for the visualization of brain fiber tract by using 24-bit color coding in diffusion tensor image

  • Oh, Jung-Su;Song, In-Chan;Ik hwan Cho;Kim, Jong-Hyo;Chang, Kee-Hyun;Park, Kwang-Suk
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.133-133
    • /
    • 2002
  • Purpose: The purpose of paper is to implement software to visualize brain fiber tract using a 24-bit color coding scheme and to test its feasibility. Materials and Methods: MR imaging was performed on GE 1.5 T Signa scanner. For diffusion tensor image, we used a single shot spin-echo EPI sequence with 7 non-colinear pulsed-field gradient directions: (x, y, z):(1,1,0),(-1,1,0),(1,0,1),(-1,0,1),(0,1,1),(0,1,-1) and without diffusion gradient. B-factor was 500 sec/$\textrm{mm}^2$. Acquisition parameters are as follows: TUTE=10000ms/99ms, FOV=240mm, matrix=128${\times}$128, slice thickness/gap=6mm/0mm, total slice number=30. Subjects consisted of 10 normal young volunteers (age:21∼26 yrs, 5 men, 5 women). All DTI images were smoothed with Gaussian kernel with the FWHM of 2 pixels. Color coding schemes for visualization of directional information was as follows. HSV(Hue, Saturation, Value) color system is appropriate for assigning RGB(Red, Green, and Blue) value for every different directions because of its volumetric directional expression. Each of HSV are assigned due to (r,$\theta$,${\Phi}$) in spherical coordinate. HSV calculated by this way can be transformed into RGB color system by general HSV to RGB conversion formula. Symmetry schemes: It is natural to code the antipodal direction to be same color(antipodal symmetry). So even with no symmetry scheme, the antipodal symmetry must be included. With no symmetry scheme, we can assign every different colors for every different orientation.(H =${\Phi}$, S=2$\theta$/$\pi$, V=λw, where λw is anisotropy). But that may assign very discontinuous color even between adjacent yokels. On the other hand, Full symmetry or absolute value scheme includes symmetry for 180$^{\circ}$ rotation about xy-plane of color coordinate (rotational symmetry) and for both hemisphere (mirror symmetry). In absolute value scheme, each of RGB value can be expressed as follows. R=λw|Vx|, G=λw|Vy|, B=λw|Vz|, where (Vx, Vy, Vz) is eigenvector corresponding to the largest eigenvalue of diffusion tensor. With applying full symmetry or absolute value scheme, we can get more continuous color coding at the expense of coding same color for symmetric direction. For better visualization of fiber tract directions, Gamma and brightness correction had done. All of these implementations were done on the IDL 5.4 platform.

  • PDF

Automatic Skin Basal Cell Carcinoma Detection Using Protophorphyrin IX((PpIX) Fluorescence Image (PpIX 형광영상을 이용한 피부 기저세포암 자동검출)

  • Yu, Hong-Yeon;Jun, Do-Young;Kim, Min-Sung;Hong, Sung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.47-54
    • /
    • 2008
  • In this paper, we propose an auto-detection algorithm of basal cell carcinoma(BCC) from the protophorphyrin IX(PpIX) fluorescence image induced by appling the methyl 5-aminolaevulinate(MAL) ointment-induced protophorphyrin IX(PpIX) to the skin tumour area and then shining the wood lamp on the area. The proposed algorithm first generates 3 mask areas-tumor area, suspected tumor area and tumor free area and then applies local watershed algorithm to the turner and the suspected tumor areas to make small watershed regions that include similar luminance value pixels. Next, small watershed regions are merged by hierarchical queue based fast region merging that uses the difference between the average luminance values of adjacent watershed regions as a region merging criterion and finally BCC regions are detected. 50 tissue samples are acquired from the tumour regions of 10 patients with BCC that are extracted by using the proposed algorithm and are performed pathological examination by expert dermatologist. Experiment result shows the rate of tumor detection from BCC lesion using presurgical in vivo of MAL-indeuced PpIX fluorescence has high sensitivity 94.1% and relatively high specificity 82.6%.

Hierarchical Clustering Approach of Multisensor Data Fusion: Application of SAR and SPOT-7 Data on Korean Peninsula

  • Lee, Sang-Hoon;Hong, Hyun-Gi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.65-65
    • /
    • 2002
  • In remote sensing, images are acquired over the same area by sensors of different spectral ranges (from the visible to the microwave) and/or with different number, position, and width of spectral bands. These images are generally partially redundant, as they represent the same scene, and partially complementary. For many applications of image classification, the information provided by a single sensor is often incomplete or imprecise resulting in misclassification. Fusion with redundant data can draw more consistent inferences for the interpretation of the scene, and can then improve classification accuracy. The common approach to the classification of multisensor data as a data fusion scheme at pixel level is to concatenate the data into one vector as if they were measurements from a single sensor. The multiband data acquired by a single multispectral sensor or by two or more different sensors are not completely independent, and a certain degree of informative overlap may exist between the observation spaces of the different bands. This dependence may make the data less informative and should be properly modeled in the analysis so that its effect can be eliminated. For modeling and eliminating the effect of such dependence, this study employs a strategy using self and conditional information variation measures. The self information variation reflects the self certainty of the individual bands, while the conditional information variation reflects the degree of dependence of the different bands. One data set might be very less reliable than others in the analysis and even exacerbate the classification results. The unreliable data set should be excluded in the analysis. To account for this, the self information variation is utilized to measure the degrees of reliability. The team of positively dependent bands can gather more information jointly than the team of independent ones. But, when bands are negatively dependent, the combined analysis of these bands may give worse information. Using the conditional information variation measure, the multiband data are split into two or more subsets according the dependence between the bands. Each subsets are classified separately, and a data fusion scheme at decision level is applied to integrate the individual classification results. In this study. a two-level algorithm using hierarchical clustering procedure is used for unsupervised image classification. Hierarchical clustering algorithm is based on similarity measures between all pairs of candidates being considered for merging. In the first level, the image is partitioned as any number of regions which are sets of spatially contiguous pixels so that no union of adjacent regions is statistically uniform. The regions resulted from the low level are clustered into a parsimonious number of groups according to their statistical characteristics. The algorithm has been applied to satellite multispectral data and airbone SAR data.

  • PDF

Assessment of Topographic Normalization in Jeju Island with Landsat 7 ETM+ and ASTER GDEM Data (Landsat 7 ETM+ 영상과 ASTER GDEM 자료를 이용한 제주도 지역의 지형보정 효과 분석)

  • Hyun, Chang-Uk;Park, Hyeong-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.393-407
    • /
    • 2012
  • This study focuses on the correction of topographic effects caused by a combination of solar elevation and azimuth, and topographic relief in single optical remote sensing imagery, and by a combination of changes in position of the sun and topographic relief in comparative analysis of multi-temporal imageries. For the Jeju Island, Republic of Korea, where Mt. Halla and various cinder cones are located, a Landsat 7 ETM+ imagery and ASTER GDEM data were used to normalize the topographic effects on the imagery, using two topographic normalization methods: cosine correction assuming a Lambertian condition and assuming a non-Lambertian c-correction, with kernel sizes of $3{\times}3$, $5{\times}5$, $7{\times}7$, and $9{\times}9$ pixels. The effects of each correction method and kernel size were then evaluated. The c-correction with a kernel size of $7{\times}7$ produced the best result in the case of a land area with various land-cover types. For a land-cover type of forest extracted from an unsupervised classification result using the ISODATA method, the c-correction with a kernel size of $9{\times}9$ produced the best result, and this topographic normalization for a single land cover type yielded better compensation for topographic effects than in the case of an area with various land-cover types. In applying the relative radiometric normalization to topographically normalized three multi-temporal imageries, more invariant spectral reflectance was obtained for infrared bands and the spectral reflectance patterns were preserved in visible bands, compared with un-normalized imageries. The results show that c-correction considering the remaining reflectance energy from adjacent topography or imperfect atmospheric correction yielded superior normalization results than cosine correction. The normalization results were also improved by increasing the kernel size to compensate for vertical and horizontal errors, and for displacement between satellite imagery and ASTER GDEM.