• 제목/요약/키워드: Adipose tissue-derived stem cells

검색결과 99건 처리시간 0.021초

최근 척수손상 백서에서 인체지방조직유래 중간엽 줄기세포 이식 및 성장호르몬의 투여가 신경회복에 미치는 영향 (The Effect of Human Adipose Tissue Derived Mesenchymal Stem Cells and Growth Hormone on the Recovery of Neurological Deficits due to Experimental Spinal Cord Injury in Rat)

  • 이근철;문인선;허정;권용석;김석권;손희동
    • Archives of Plastic Surgery
    • /
    • 제35권1호
    • /
    • pp.13-19
    • /
    • 2008
  • Purpose: Human adipose tissue-derived mesenchymal stem cells(hATSCs) can be differentiated into multiple mesenchymal lineages, including bone, cartilage, and muscle. And growth hormone play important roles in the normal growth and development of the CNS. In this study, we explored whether the transplanted hATSCs and growth hormones could improve functional recoveries from rats with contusive spinal cord injury. Methods: We divided 30 female rats, which were subjected to a weight driven implant spinal cord injury, into 3 groups with 10 rats each; Group A as a control group, group B with hATSCs transplantation on injured region, and group C with hATSCs transplantation and GH administration for 7 days. Then, we researched their neurologic functional recoveries before and 2, 4, and 8 weeks after transplantation using Basso-Beattie-Bresnahan (BBB) locomotor rating scale. And we checked Y-chromosome positive cells by FISH(Fluorescent in situ hybridization) to identify the survival of transplanted mesenchymal stem cells. Results: After 4 weeks of transplantation, the group B and group C showed significant improvement of neurologic function on BBB locomotor rating scale in comparison with the group A(Group A: $13.1{\pm}0.58$, Group B: $14.6{\pm}0.69$, Group C: $14.9{\pm}0.56$). Moreover, the group C displayed meaningful recovery of neurologic function after 8 weeks in comparison with group B (Group B: $15.7{\pm}0.63$, Group C: $16.5{\pm}1.14$). The group A, the control one, improved for 5 weeks after injury, and had no more recovery. On the other hand, Group B and C showed the improvement of neurologic function continuously for 9 weeks after injury. Conclusion: In this study, we found out that hATSCs transplantation have an effect on neurologic functional recovery of spinal cord injured rat and GH injection seems to bring the synergistic results on this good tendency.

Facial Soft Tissue Augmentation using Autologous Fat Mixed with Stromal Vascular Fraction

  • Lee, Sang Kyun;Kim, Deok-Woo;Dhong, Eun-Sang;Park, Seung-Ha;Yoon, Eul-Sik
    • Archives of Plastic Surgery
    • /
    • 제39권5호
    • /
    • pp.534-539
    • /
    • 2012
  • Background Autologous fat grafting evolved over the twentieth century to become a quick, safe, and reliable method for restoring volume. However, autologous fat grafts have some problems including uncertain viability of the grafted fat and a low rate of graft survival. To overcome the problems associated with autologous fat grafts, we used uncultured adipose tissue-derived stromal cell (stromal vascular fraction, SVF) assisted autologous fat grafting. Thus, the purpose of this study was to evaluate the effect of SVF in a clinical trial. Methods SVF cells were freshly isolated from half of the aspirated fat and were used in combination with the other half of the aspirated fat during the procedure. Between March 2007 and February 2008, a total of 9 SVF-assisted fat grafts were performed in 9 patients. The patients were followed for 12 weeks after treatment. Data collected at each follow-up visit included clinical examination of the graft site(s), photographs for historical comparison, and information from a patient questionnaire that measured the outcomes from the patient perspective. The photographs were evaluated by medical professionals. Results Scores of the left facial area grafted with adipose tissue mixed with SVF cells were significantly higher compared with those of the right facial area grafted with adipose tissue without SVF cells. There was no significant adverse effect. Conclusions The subjective patient satisfaction survey and surgeon survey showed that SVF-assisted fat grafting was a surgical procedure with superior results.

Lipopolysaccharide로 자극한 RAW 264.7 세포에서 성체줄기세포 유래 엑소좀(exosome)의 면역 조절 효과 (Immunomodulatory Effect of Mesenchymal Stem Cell-Derived Exosomes in Lipopolysaccharide-Stimulated RAW 264.7 Cells)

  • 정수경;박미정;이지현;변정수;구나연;조인수;차상호
    • 한국미생물·생명공학회지
    • /
    • 제44권3호
    • /
    • pp.383-390
    • /
    • 2016
  • 본 연구는 대식세포에서 LPS를 이용하여 염증 유사 세포 모델을 만들고 염증 유사 대식세포 모델에서 성체줄기세포의 면역 조절 능력을 평가하였다. LPS 자극에 의해 증가된 IL-1β, TNF-α 및 IL-10의 생성은 성체줄기세포를 공배양한 실험군 뿐만 아니라 성체줄기세포를 배양한 상층 배양액을 처리한 실험군에서도 동일한 효과를 나타내었으며, 또한 성체줄기세포 유래 엑소좀을 염증 유사 대식세포 모델에 처리하여 유사한 결과를 관찰하였다. 이 결과는 성체줄기세포 자체의 염증 억제 기능보다는 성체줄기세포 유래 엑소좀을 포함하여 성체줄기세포가 분비하는 bioactive molecules에 의해 세포 간 신호 전달이 이루어지고 있음을 의미하며, 이러한 엑소좀은 염증 관련 질환 분야에 치료적 적용이 가능하고 또한 새로운 염증 치료제 개발의 툴로 사용될 수 있음을 시사한다.

Evaluating the effect of conditioned medium from mesenchymal stem cells on differentiation of rat spermatogonial stem cells

  • Hoda Fazaeli;Mohsen Sheykhhasan;Naser Kalhor;Faezeh Davoodi Asl;Mojdeh Hosseinpoor Kashani;Azar Sheikholeslami
    • Anatomy and Cell Biology
    • /
    • 제56권4호
    • /
    • pp.508-517
    • /
    • 2023
  • In cancer patients, chemo/radio therapy may cause infertility by damaging the spermatogenesis affecting the self-renewal and differentiation of spermatogonial stem cells (SSCs). In vitro differentiation of stem cells especially mesenchymal stem cells (MSCs) into germ cells has recently been proposed as a new strategy for infertility treatment. The aim of this study was to evaluate the proliferation and differentiation of SSCs using their co-culture with Sertoli cells and conditioned medium (CM) from adipose tissue-derived MSCs (AD-MSCs). Testicular tissues were separated from 2-7 days old neonate Wistar Rats and after mechanical and enzymatic digestion, the SSCs and Sertoli cells were isolated and cultured in Dulbecco's modified eagle medium with 10% fetal bovine serum, 1X antibiotic, basic fibroblast growth factor, and glial cell line-derived neurotrophic factor. The cells were treated with the CM from AD-MSCs for 12 days and then the expression level of differentiation-related genes were measured. Also, the expression level of two major spermatogenic markers of DAZL and DDX4 was calculated. Scp3, Dazl, and Prm1 were significantly increased after treatment compared to the control group, whereas no significant difference was observed in Stra8 expression. The immunocytochemistry images showed that DAZL and DDX4 were positive in experimental group comparing with control. Also, western blotting revealed that both DAZL and DDX4 had higher expression in the treated group than the control group, however, no significant difference was observed. In this study, we concluded that the CM obtained from AD-MSCs can be considered as a suitable biological material to induce the differentiation in SSCs.

Adipose Tissue-Derived Mesenchymal Stromal Cells from Ex-Morbidly Obese Individuals Instruct Macrophages towards a M2-Like Profile In Vitro

  • Daiana V. Lopes Alves;Cesar Claudio-da-Silva;Marcelo C. A. Souza;Rosa T. Pinho;Wellington Seguins da Silva;Periela S. Sousa-Vasconcelos;Radovan Borojevic;Carmen M. Nogueira;Helio dos S. Dutra;Christina M. Takiya;Danielle C. Bonfim;Maria Isabel D. Rossi
    • International Journal of Stem Cells
    • /
    • 제16권4호
    • /
    • pp.425-437
    • /
    • 2023
  • Obesity, which continues to increase worldwide, was shown to irreversibly impair the differentiation potential and angiogenic properties of adipose tissue mesenchymal stromal cells (ADSCs). Because these cells are intended for regenerative medicine, especially for the treatment of inflammatory conditions, and the effects of obesity on the immunomodulatory properties of ADSCs are not yet clear, here we investigated how ADSCs isolated from former obese subjects (Ex-Ob) would influence macrophage differentiation and polarization, since these cells are the main instructors of inflammatory responses. Analysis of the subcutaneous adipose tissue (SAT) of overweight (OW) and Ex-Ob subjects showed the maintenance of approximately twice as many macrophages in Ex-Ob SAT, contained within the CD68+/FXIII-A- inflammatory pool. Despite it, in vitro, coculture experiments revealed that Ex-Ob ADSCs instructed monocyte differentiation into a M2-like profile, and under inflammatory conditions induced by LPS treatment, inhibited HLA-DR upregulation by resting M0 macrophages, originated a similar percentage of TNF-α+ cells, and inhibited IL-10 secretion, similar to OW-ADSCs and BMSCs, which were used for comparison, as these are the main alternative cell types available for therapeutic purposes. Our results showed that Ex-Ob ADSCs mirrored OW-ADSCs in macrophage education, favoring the M2 immunophenotype and a mixed (M1/M2) secretory response. These results have translational potential, since they provide evidence that ADSCs from both Ex-Ob and OW subjects can be used in regenerative medicine in eligible therapies. Further in vivo studies will be fundamental to validate these observations.

Pulmonary passage of canine adipose tissue-derived mesenchymal stem cells through intravenous transplantation in mouse model

  • Jaeyeon Kwon;Mu-Young Kim;Soojung Lee;Jeongik Lee;Hun-Young Yoon
    • Journal of Veterinary Science
    • /
    • 제25권3호
    • /
    • pp.36.1-36.15
    • /
    • 2024
  • Importance: The intravenous administration of adipose tissue-derived mesenchymal stem cells (AdMSCs) in veterinary medicine is an attractive treatment option. On the other hand, it can result in severe complications, including pulmonary thromboembolism (PTE). Objective: The present study assessed the occurrence of PTE after the intravenous infusion of canine AdMSCs (cAdMSCs) into experimental animals. Methods: Five-week-old male BALB/c hairless mice were categorized into groups labeled A to G. In the control group (A), fluorescently stained 2×106 cAdMSCs were diluted in 200 µL of suspension and injected into the tail vein as a single bolus. The remaining groups included the following: group B with 5×106 cells, group C with 3×106 cells, group D with 1×106 cells, group E with 1×106 cells injected twice with a one-day interval, group F with 2×106 cells in 100 µL of suspension, and group G with 2×106 cells in 300 µL of suspension. Results: Group D achieved a 100% survival rate, while none of the subjects in groups B and C survived (p = 0.002). Blood tests revealed a tendency for the D-dimer levels to increase as the cell dose increased (p = 0.006). The platelet count was higher in the low cell concentration groups and lower in the high cell concentration groups (p = 0.028). A histological examination revealed PTE in most deceased subjects (96.30%). Conclusions and Relevance: PTE was verified, and various variables were identified as potential contributing factors, including the cell dose, injection frequency, and suspension volume.

인체 지방조직에서 유래한 줄기세포의 신경세포 분화능 및 신경재생 유도효과 (The Effects of Adipose Derived Stem Cells on Neurogenic Differentiation and Induction of Nerve Regeneration)

  • 전영준;이종원;최윤석;김영진;김성은;이종인;한기택
    • Archives of Plastic Surgery
    • /
    • 제33권2호
    • /
    • pp.205-212
    • /
    • 2006
  • Using adipose derived stem cells(ASCs), neurogenic differentiation was induced in a mono layered culture medium containing neuronal induction agents. Cells differentiated to the neuronal cells were observed with a inverted microscope and immunofluorecent study. We made a 15 mm long defect in the sciatic nerve of 14 rats and connected a silicone tube to the defect. Then, we mixed neuronal progenitor cells differentiated from ASCs with collagen gel and grafted them to a group of rats(experimental group) and grafted only collagen gel into another group(control group). In 4 and 8 weeks after the graft, histological observation was made. According to the result, the number and diameter of myelinated axons were significantly increased in the experimental group. In addition, the nerve conduction velocity was improved more in the experimental group and neovascularity also increased. Moreover, reaction with S100 and p75 was observed in regenerated nerves in the experimental group, suggesting that the grafted cells were differentiated into supportive cells such as Schwann's cells. In conclusion, this research proved that ASCs can multiply and differentiate into neuronal cells. If they are grafted into nerve defects, the grafted cells are differ entiated into supportive cells such as Schwann's cells and thus contribute to nerve regeneration. Accordingly, the use of adipose tissue obtained easily without the limitation of donor site can be greatly helpful in treating peripheral nerve defects.

Is There Additive Therapeutic Effect When GCSF Combined with Adipose-Derived Stem Cell in a Rat Model of Acute Spinal Cord Injury?

  • Min, Joongkee;Kim, Jeong Hoon;Choi, Kyoung Hyo;Yoon, Hyung Ho;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • 제60권4호
    • /
    • pp.404-416
    • /
    • 2017
  • Objective : Functional and neural tissue recovery has been reported in many animal studies conducted with stem cells. However, the combined effect of cytokines and stem cells has not yet been adequately researched. Here, we analyzed the additive effects of granulocyte colony-stimulating factor (GCSF) on adipose-derived stem cells (ADSCs) infusion in the treatment of acute spinal cord injury (SCI) in rats. Methods : Four days after intrathecal infusion tubes implantation in Sprague-Dawley rats, SCI was induced with an infinite horizon impactor. In the Sham group (n=5), phosphate-buffered saline was injected 3, 7, and 14 days after SCI. GCSF, ADSCs, and ADSCs with GCSF were injected at the same time in the GCSF (n=8), ADSC (n=8), and ADSC+GCSF groups (n=7), respectively. Results : The ADSC and ADSC+GCSF groups, but not the GCSF group, showed significantly higher Basso-Beattie-Bresnahan scores than the Sham group during 8 weeks (p<0.01), but no significant difference between the ADSC and ADSC+GCSF groups. In the ladder rung test, all four groups were significantly different from each other, with the ADSC+GCSF group showing the best improvement (p<0.01). On immunofluorescent staining (GAP43, MAP2), western blotting (GAP43), and reverse transcription polymerase chain reaction (GAP43, nerve growth factor), the ADSC and ADSC+GCSF groups showed higher levels than the Sham and GCSF groups. Conclusion : Our analyses suggest that the combination of GCSF and ADSCs infusions in acute SCI in the rat does not have a significant additive effect. Hence, when combination agents for SCI stem cell therapy are considered, molecules other than GCSF, or modifications to the methodology, should be investigated.