• Title/Summary/Keyword: Adiponectin

Search Result 324, Processing Time 0.024 seconds

Hepatoprotective Effect of Lactiplantibacillus plantarum DSR330 in Mice with High Fat Diet-Induced Nonalcoholic Fatty Liver Disease

  • Na-Kyoung Lee;Yunjung Lee;Da-Soul Shin;Jehyeon Ra;Yong-Min Choi;Byung Hee Ryu;Jinhyeuk Lee;Eunju Park;Hyun-Dong Paik
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.399-406
    • /
    • 2024
  • Lactiplantibacillus plantarum DSR330 (DSR330) has been examined for its antimicrobials production and probiotics. In this study, the hepatoprotective effects of DSR330 were examined against nonalcoholic fatty liver disease (NAFLD) in a high-fat diet (HFD)-fed C57BL/6 mouse model. To induce the development of fatty liver, a HFD was administered for five weeks, and then silymarin (positive control) or DSR330 (108 or 109 CFU/day) was administered along with the HFD for seven weeks. DSR330 significantly decreased body weight and altered serum and hepatic lipid profiles, including a reduction in triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels compared to those in the HFD group. DSR330 significantly alleviated HFD-related hepatic injury by inducing morphological changes and reducing the levels of biomarkers, including AST, ALT, and ALP. Additionally, DSR330 alleviated the expression of SREBP-1c, ACC1, FAS, ACO, PPARα, and CPT-1 in liver cells. Insulin and leptin levels were decreased by DSR330 compared to those observed in the HFD group. However, adiponectin levels were increased, similar to those observed in the ND group. These results demonstrate that L. plantarum DSR330 inhibited HFD-induced hepatic steatosis in mice with NAFLD by modulating various signaling pathways. Hence, the use of probiotics can lead to hepatoprotective effects.

Opuntia humifusa stems rich in quercetin and isorhamnetin alleviate insulin resistance in high-fat diet-fed rats

  • Young-Min Lee;Yeonjeong Choi;Eunseo Kim;In-Guk Hwang;Yoona Kim
    • Nutrition Research and Practice
    • /
    • v.18 no.4
    • /
    • pp.498-510
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Obesity, characterized by abnormal fat accumulation and metabolic disturbances, presents a significant health challenge. Opuntia humifusa Raf., commonly known as Korean Cheonnyuncho, is rich in various beneficial compounds and has demonstrated antioxidant and anti-inflammatory effects. However, its potential impact on glucose and lipid metabolism, particularly in obese rats, remains unexplored. We aimed to investigate whether O. humifusa stems and fruits could beneficially alter glucose metabolism and lipid profiles in a rat model of high-fat diet (HFD)-induced obesity. MATERIALS/METHODS: Thirty-two rats were allocated into 4 groups: normal diet (NF), HFD control (HF), HFD treated with 2% O. humifusa stems (HF-OS), and HFD treated with 2% O. humifusa fruits (HF-OF). Experimental diets were administered for 6 weeks. At the end of the treatment, liver and fat tissues were isolated, and serum was collected for biochemical analysis. The major flavonoid from O. humifusa stems and fruits was identified and quantified. RESULTS: After 6 weeks of treatment, the serum fasting glucose concentration in the HF-OS group was significantly lower than that in the HF group. Serum fasting insulin concentrations in both HF-OS and HF-OF groups tended to be lower than those in the HF group, indicating a significant improvement in insulin sensitivity in the HF-OS group. Additionally, the HF-OS group exhibited a tendency towards the restoration of adiponectin levels to that of the NF group. CONCLUSION: The 2% O. humifusa stems contain abundant quercetin and isorhamnetin, which alter fasting blood glucose levels in rats fed a HFD, leading to a favorable improvement in insulin resistance.

Studies on the Mechanism of the Ameliorative Activities on Hyperglycemia and Dyslipidemia of Red Ginseng Herbal Acupuncture in C57BL/KsJ db/db Mice (홍삼약침(藥鍼)이 제2형 당뇨병 동물모델의 항고혈당(抗高血糖)및 항고지질(抗高脂質) 기전(機轉)에 미치는 영향(影響))

  • Kim, Jong-Deok;Kim, Jong-In;Koh, Hyung-Kyun;Lee, Yun-Ho;Kang, Sung-Keel
    • Journal of Acupuncture Research
    • /
    • v.25 no.2
    • /
    • pp.11-26
    • /
    • 2008
  • 목적 : 홍삼약침(藥鍼)이 고혈당 및 지질대사장애에 미치는 개선효과와 그 기전을 조사하고자 한다. 방법 : 홍삼약침(藥鍼)의 anti-diabetic 활성과 그 기전을 C57BL/KsJ db/db mice를 이용하여 관찰하였다. 실험 동물은 대조군(DC), 홍삼약침(藥鍼)군(RGL, RGH) 및 양성대조군(MET, GPZ, PIO)의 6군으로 나누었다. 홍삼약침(藥鍼)군은 $0.2m{\ell}$의 홍삼약침멸(藥鍼滅)을 각각 100mg/kg(RGL) 및 200mg/kg(RGH)씩 인체의 간유(肝兪)($BL_{18}$)에 상응하는 혈위에 1일 1회 10주간 좌우 혈을 번갈아가며 약침 시술하였다. 양성대조군은 metformin 300mg/kg(MET), glipizide 15mg/kg(GPZ) 및 pioglitazone 30mg/kg(PIO)을 각각 1일 1회 10주간 경구투여 하였다. 체중과 혈당은 매주 측정하였다. 실험 10주 후에는 혈액채취로 혈중 glucose, 당화혈색소(HbAlc), insulin, 중성지방(TG), adiponectin, leptin, non-esterified fatty acid(NEFA)를 측정 하였고, 간 조직을 채취하여 조직학적 검사 및 gene expression 분석을 시행하였다. 결과 : 홍삼약침(藥鍼)(RGL, RGH)은 10주 동안 C57BL/KsJ db/db mice의 체중을 증가시키는 부작용은 나타나지 않았다. 홍삼약침(藥鍼)군(RGL, RGH)의 사료섭취량은 대조군과 비슷하였으나 음수량은 증가하였다. 홍삼약침(藥鍼)(RGL, RGH)은 대조군에 비하여 각각 19.8% 및 18.3% 혈당을 낮추었고, 홍삼약침(藥鍼)(RGL)은 insulin resistance를 27.7% 감소시켰으며, 경구내당능 검사의 혈중 glucose에서는 대조군에 비해 홍삼약침(藥鍼)군(RGL, RGH)과 양성대조군(MET, GPZ, PIO)에서 각각 19.8%, 18.3%, 67.7%, 52.3% 및 56.9% 감소시켰다. 당화혈색소(HbAlc)는 홍삼약침(藥鍼)(RGL, RGH), MET, GPZ 및 PIO군에서 대조군에 비하여 각각 11.0%, 6.4%, 18.9%, 16.1% 및 27.9% 감소시켰으며, 혈중 glucose감소와 유사한 경향을 나타내었다. 홍삼약침(藥鍼)(RGL)은 대조군에 비해 TG와 NEFA를 각각 18.8% 및 16.8% 감소시켰고, adiponectin과 leptin을 각각 20.6% 및 12.1% 증가시켰다. 홍삼약침(藥鍼)(RGL, RGH)은 중성지방의 침착으로 인한 간의 질량비 증가를 억제하지 못하였으나, 지방구를 감소시겼음을 관찰할 수 있었다. Microarray 분석에서는 홍삼약침(藥鍼)(RGL, RGH)이 간에서 glycolysis, gluconeogenesis 및 fatty acid beta-oxidation과 관련된 유전자 발현에 영향을 미치는 것으로 나타나 양성대조군 metformin과 유사한 기전을 나타내었다. 요약 : 홍삼약침(藥鍼)은 T2DM동물모델(C57BL/KsJ db/db mice)에서 항당뇨 및 지질대사 개선활성이 있었다. 홍삼약침(藥鍼)은 C57BL/KsJ db/db mice의 간조직에서 lipogenesis억제 및 fatty acid beta-oxidation활성을 통해 혈당 이용을 높이고, insulin sensitivity를 향상시켰다. 또한 유전자 발현분석을 통해 그 기전이 metformin과 유사함을 확인할 수 있었으므로 향후 홍삼약침(藥鍼)의 새로운 약침 기술 개발 근거가 될 수 있을 것으로 사료된다.

  • PDF

Anti-obesity Effects of African Mango (Irvingia gabonesis, IGOB 131TM) Extract in Leptin-deficient Obese Mice (유전성 비만 마우스에 대한 아프리칸 망고 추출물의 항비만 효과)

  • Lee, Minhee;Nam, Da-Eun;Kim, Ok Kyung;Shim, Tae Jin;Kim, Ji Hoon;Lee, Jeongmin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.10
    • /
    • pp.1477-1483
    • /
    • 2014
  • This study investigated the anti-obesity effects of African mango (Irvingia gabonesis, IGOB $131^{TM}$) extract in leptin-deficient obese mice. Experimental groups were treated with two different doses of IGOB $131^{TM}$ (1% and 2% in each AIN93G supplement) for 8 weeks. Treatment of obese mice with both low and high dose of IGOB $131^{TM}$ significantly reduced body weight gain by 10.9% and 13.3%, respectively, compared to control obese mice. Subcutaneous adipose tissue weight of mice was significantly reduced by 18% by low-dose and 23% by high-dose supplementation. This result was supported by micro-CT analysis around the abdominal regions of mice, indicating that the adipose tissue area and volume were significantly reduced by treatment with IGOB $131^{TM}$. Serum levels of triglycerides in the low- and high-dose groups were reduced by 36.5% and 43.8%, respectively, upon treatment with IGOB $131^{TM}$, whereas total cholesterol levels were reduced by 31.8% and 35.4%. Interestingly, the serum LDL level decreased upon treatment with IGOB $131^{TM}$ while the serum level of HDL dramatically increased upon high-dose treatment with IGOB $131^{TM}$, resulting in a significant reduction in the LDL to HDL ratio of 59.2%. These results were supported by the expression levels of enzymes and proteins related to lipid metabolism assessed by real-time PCR. There was a significant increase of in adiponectin expression as well as significant decreases in the expression of FAS, LPL, and lipid regulatory transcription factors such as PPAR-${\gamma}$, C/EBP, and SREBP upon both low- and high-dose IGOB $131^{TM}$ treatment. However, there was no statistical difference between low- and high-dose treatments. These results suggest that IGOB $131^{TM}$ is able to regulate the serum lipid profiles by reducing triglyceride and increasing HDL levels as well as regulate expression of lipid metabolic factors, resulting in reduction of a weight gain in leptin-deficient obese mice.

Anti-diabetic effect and mechanism of Korean red ginseng extract in C57BL/KsJ db/db mice

  • Yuan, Hai-Dan;Shin, Eun-Jung;Chung, Sung-Hyun
    • Proceedings of the Ginseng society Conference
    • /
    • 2007.12a
    • /
    • pp.57-58
    • /
    • 2007
  • Purpose: Ginseng is a well-known medical plant used in traditional Oriental medicine. Korean red ginseng (KRG) has been known to have potent biological activities such as radical scavenging, vasodilating, anti-tumor and anti-diabetic activities. However, the mechanism of the beneficial effects of KRG on diabetes is yet to be elucidated. The present study was designed to investigate the anti-diabetic effect and mechanism of KRG extract in C57BL/KsJ db/db mice. Methods: The db/db mice were randomly divided into six groups: diabetic control group (DC), red ginseng extract low dose group (RGL, 100 mg/kg), red ginseng extract high dose group (RGH, 200 mg/kg), metformin group (MET, 300 mg/kg), glipizide group (GPZ, 15 mg/kg) and pioglitazone group (PIO, 30 mg/kg), and treated with drugs once per day for 10 weeks. During the experiment, body weight and blood glucose levels were measured once every week. At the end of treatment, we measured Hemoglobin A1c (HbA1c), blood glucose, insulin, triglyceride (TG), adiponectin, leptin, non-esterified fatty acid (NEFA). Morphological analyses of liver, pancreas and white adipose tissue were done by histological observation through hematoxylin-eosin staining. Pancreatic islet insulin and glucagon levels were detected by double-immunofluorescence staining. To elucidate an action of mechanism of KRG, DNA microarray analyses were performed, and western blot and RT-PCR were conducted for validation. Results: Compared to the DC group mice, body weight gain of PIO treated group mice showed 15.2% increase, but the other group mice did not showed significant differences. Compared to the DC group, fasting blood glucose levels were decreased by 19.8% in RGL, 18.3% in RGH, 67.7% in MET, 52.3% in GPZ, 56.9% in PIO-treated group. With decreased plasma glucose levels, the insulin resistance index of the RGL-treated group was reduced by 27.7% compared to the DC group. Insulin resistance values for positive drugs were all markedly decreased by 80.8%, 41.1% and 68.9%, compared to that of DC group. HbA1c levels in RGL, RGH, MET, GPZ and PIO-treated groups were also decreased by 11.0%, 6.4%, 18.9%, 16.1% and 27.9% compared to that of DC group, and these figure revealed a similar trend shown in plasma glucose levels. Plasma TG and NEFA levels were decreased by 18.8% and 16.8%, respectively, and plasma adiponectin and leptin levels were increased by 20.6% and 12.1%, respectively, in the RGL-treated group compared to those in DC group. Histological analysis of the liver of mice treated with KRG revealed a significantly decreased number of lipid droplets compared to the DC group. The control mice exhibited definitive loss and degeneration of islet, whereas mice treated with KRG preserved islet architecture. Compared to the DC group mice, KRG resulted in significant reduction of adipocytes. From the pancreatic islet double-immunofluorescence staining, we observed KRG has increased insulin production, but decreased glucagon production. KRG treatment resulted in stimulation of AMP-activated protein kinase (AMPK) phosphorylation in the db/db mice liver. To elucidate mechanism of action of KRG extract, microarray analysis was conducted in the liver tissue of mice treated with KRG extract, and results suggest that red ginseng affects on hepatic expression of genes responsible for glycolysis, gluconeogenesis and fatty acid oxidation. In summary, multiple administration of KRG showed the hypoglycemic activity and improved glucose tolerance. In addition, KRG increased glucose utilization and improved insulin sensitivity through inhibition of lipogenesis and activation of fatty acid $\beta$-oxidation in the liver tissue. In view of our present data, we may suggest that KRG could provide a solid basis for the development of new anti-diabetic drug.

  • PDF

Ginsenoside Rb1 ameliorates liver fat accumulation by upregulating perilipin expression in adipose tissue of db/db obese mice

  • Yu, Xizhong;Ye, Lifang;Zhang, Hao;Zhao, Juan;Wang, Guoqiang;Guo, Chao;Shang, Wenbin
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.199-205
    • /
    • 2015
  • Background: Ginsenoside Rb1 (G-Rb1), the major active constituent of ginseng, improves insulin sensitivity and exerts antidiabetic effects. We tested whether the insulin-sensitizing and antidiabetic effects of G-Rb1 results from a reduction in ectopic fat accumulation, mediated by inhibition of lipolysis in adipocytes. Methods: Obese and diabetic db/db mice were treated with daily doses of 20 mg/kg G-Rb1 for 14 days. Hepatic fat accumulation was evaluated by measuring liver weight and triglyceride content. Levels of blood glucose and serum insulin were used to evaluate insulin sensitivity in db/db mice. Lipolysis in adipocytes was evaluated by measuring plasma-free fatty acids and glycerol release from 3T3-L1 adipocytes treated with G-Rb1. The expression of relevant genes was analyzed by western blotting, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay kit. Results: G-Rb1 increased insulin sensitivity and alleviated hepatic fat accumulation in obese diabetic db/db mice, and these effects were accompanied by reduced liver weight and hepatic triglyceride content. Furthermore, G-Rb1 lowered the levels of free fatty acids in obese mice, which may contribute to a decline in hepatic lipid accumulation. Corresponding to these results, G-Rb1 significantly suppressed lipolysis in 3T3-L1 adipocytes and upregulated the perilipin expression in both 3T3-L1 adipocytes and mouse epididymal fat pads. Moreover, G-Rb1 increased the level of adiponectin and reduced that of tumor necrosis factor-${\alpha}$ in obese mice, and these effects were confirmed in 3T3-L1 adipocytes. Conclusion: G-Rb1 may improve insulin sensitivity in obese and diabetic db/db mice by reducing hepatic fat accumulation and suppressing adipocyte lipolysis; these effects may be mediated via the upregulation of perilipin expression in adipocytes.

Anti-diabetic effect of purple corn extract on C57BL/KsJ db/db mice

  • Huang, Bo;Wang, Zhiqiang;Park, Jong Hyuk;Ryu, Ok Hyun;Choi, Moon Ki;Lee, Jae-Yong;Kang, Young-Hee;Lim, Soon Sung
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.22-29
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Recently, anthocyanins have been reported to have various biological activities. Furthermore, anthocyanin-rich purple corn extract (PCE) ameliorated insulin resistance and reduced diabetes-associated mesanginal fibrosis and inflammation, suggesting that it may have benefits for the prevention of diabetes and diabetes complications. In this study, we determined the anthocyanins and non-anthocyanin component of PCE by HPLC-ESI-MS and investigated its anti-diabetic activity and mechanisms using C57BL/KsJ db/db mice. MATERIALS/METHODS: The db/db mice were divided into four groups: diabetic control group (DC), 10 or 50 mg/kg PCE (PCE 10 or PCE 50), or 10 mg/kg pinitol (pinitol 10) and treated with drugs once per day for 8 weeks. During the experiment, body weight and blood glucose levels were measured every week. At the end of treatment, we measured several diabetic parameters. RESULTS: Compared to the DC group, Fasting blood glucose levels were 68% lower in PCE 50 group and 51% lower in the pinitol 10 group. Furthermore, the PCE 50 group showed 2-fold increased C-peptide and adiponectin levels and 20% decreased HbA1c levels, than in the DC group. In pancreatic islets morphology, the PCE- or pinitol-treated mice showed significant prevention of pancreatic ${\beta}$-cell damage and higher insulin content. Microarray analyses results indicating that gene and protein expressions associated with glycolysis and fatty acid metabolism in liver and fat tissues. In addition, purple corn extract increased the phosphorylation of AMP-activated protein kinase (AMPK) and decreased phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6pase) genes in liver, and also increased glucose transporter 4 (GLUT4) expressions in skeletal muscle. CONCLUSIONS: Our results suggested that PCE exerted anti-diabetic effects through protection of pancreatic ${\beta}$-cells, increase of insulin secretion and AMPK activation in the liver of C57BL/KsJ db/db mice.

The Effect of L-Carnitine and Isoflavone Supplementation on Weight Reduction and Visceral Fat Accumulation in Overweight Women (과체중 여성에서 L-carnitine과 Isoflavone 보충 섭취가 체중 및 내장지방 감소에 미치는 영향)

  • Gwak, Jung-Hyun;Lee, Jong-Ho;Lee, Sang-Jun;Park, Hyun-Woo;Kim, Yoo;Hyun, Yae-Jung
    • Journal of Nutrition and Health
    • /
    • v.40 no.7
    • /
    • pp.630-638
    • /
    • 2007
  • This study was performed to examine the combined effects of L-carnitine and isoflavone supplementation on weight reduction and body fat distribution in overweight women. Overweight/obese women (body mass index > $23kg/m^2$) who were not diagnosed any type of diseases were included in this study and sixty subjects ($41.1{\pm}1.5$ years, $25.9{\pm}0.3kg/m^2)$ were randomly assigned to a placebo (n=30) or a supplement group (n=30, L-carnitine 300 mg+isoflavone 40 mg/day). We measured anthropometric parameters, abdominal fat distribution by computerizd tomography and blood components before and after the 12 week intervention period. After the 12 weeks of supplementation, subjects in L-carnitine and isoflavone supplement group showed a significant reduction of body weight (p < 0.001), body fat % (p < 0.05), and waist to hip ratio (p < 0.01) whereas placebo group did not show any changes. In a CT-scanned results, total fat area at L4 level was significantly reduced by 8.1% (p < 0.01) with the reduction of visceral fat area (-11.1%, p < 0.001) and subcutaneous fat area (-7.0%, p < 0.05) in the supplement group. The supplementation of L-carnitine and isoflavone showed the significant improvement of HDL-C (p < 0.01) and apoB (p < 0.05) concentrations, however, change values in those markers were not significant compared with those of the placebo group. In addition, a significant increase of adiponectin level (p<0.001) was observed in the supplement group after the intervention. The result of present study demonstrated that supplementation of 300 mg L-carnitine and 40 mg isoflavone per day fur 12 weeks can give beneficial effects on weight reduction and visceral fat accumulation. These potential antiobesity supplement can produce more favorable effects when combined with lifestyle modification.

Relationship of vitamin D status and obesity index in Korean women (한국 성인 여성의 비타민 D 영양상태와 비만지표와의 관계)

  • Park, Ji-Young;Heo, Young-Ran
    • Journal of Nutrition and Health
    • /
    • v.49 no.1
    • /
    • pp.28-35
    • /
    • 2016
  • Purpose: Vitamin D status is associated with several chronic diseases related to obesity. In this study, we evaluate the nutritional status of vitamin D and its relation to obesity indices in Korean women. Methods: A total of 156 healthy women participated. Vitamin D status (serum $25-OH-vitamin\;D_3$ level) and obesity indices (body mass index, body fat mass, waisthip ratio, and body fat percentage etc.) and serum lipid profiles and serum adipokine (leptin and adiponectin) levels were analyzed. Results: The $25(OH)D_3$ level showed an extremely skewed distribution from 4.1 ng/ml to 24.4 ng/ml and mean $25(OH)D_3$ level was $9.0{\pm}4.0ng/ml$. With cut-off level for vitamin D deficiency (< 12.0 ng/ml), insufficiency (12-19.9 ng/ml) and sufficiency (${\geq}20ng/ml$), 77.6%, 19.2%, and 3.2% of subjects showed vitamin D deficiency, insufficiency, and sufficiency status, respectively. The $25(OH)D_3$ level showed positive correlation with weight (r = 0.2461, p < 0.01), body mass index (r = 0.2913, p < 0.001), body fat contents (r = 0.1691, p < 0.05), fat free mass (r = 0.2330, p < 0.01), and waist hip ratio (r = 0.1749, p < 0.05) after adjusted by age. The $25(OH)D_3$ level showed no significant correlation with serum lipid profiles and adipokine levels. Conclusion: Most subjects (76.6%) in this study, who had a vitamin D deficient status and serum $25(OH)D_3$ level, showed positive correlation with several obesity indices, however further research based on a large Korean population is needed to confirm the relationship.

Effects of Dietary Fructose and Glucose on Hepatic Steatosis and NLRP3 Inflammasome in a Rodent Model of Obesity and Type 2 Diabetes (비만 및 제2형 당뇨병 쥐 모델에서 과당과 포도당의 섭취가 지방간과 NLRP3 염증조절결합체에 미치는 영향)

  • Lee, Hee Jae;Yang, Soo Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1576-1584
    • /
    • 2013
  • This study is carried out to assess the relative effects of different doses of dietary glucose or fructose on non-alcoholic fatty liver disease (NAFLD) and hepatic metaflammation in a rodent model of type 2 diabetes. KK/HlJ male mice were fed experimental diets as follows: 1) control (CON), 2) moderate glucose (MG, 30% of total calories as glucose), 3) high glucose (HG, 60% of total calories as glucose), 4) moderate fructose (MF, 30% of total calories as fructose), and 5) high fructose (HF, 60% of total calories as fructose) for three weeks. Food intake was not affected by treatments. Compared with HF, HG not only increased serum fasting glucose and area under the curve during oral glucose tolerance test, but also decreased the levels of serum insulin and adiponectin. It indicated that glucose control was complicated via high glucose intake. High fructose treatment led to increased triglyceride in the serum and liver. In comparison to HG, high fructose diet activated NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome consisting of apoptosis-associated speck-like protein containing a CARD (ASC), NLRP3 and caspase 1, which increases interleukin (IL)-$1{\beta}$ maturation and secretion. The activation of NLRP3 inflammasome was accompanied by increased levels of tumor necrosis factor alpha (TNF-${\alpha}$) and IL-6. However, the expression of NLRP3 inflammasome components and pro-inflammatory cytokines did not differ between CON and HG. These data suggested that dietary fructose triggers hepatic metaflammation accompanied by NLRP3 inflammasome activation and has deleterious effects on NAFLD.