• 제목/요약/키워드: Adipocyte differentiation

검색결과 391건 처리시간 0.024초

Protein Tyrosine Phosphatase, Receptor Type B (PTPRB) Inhibits Brown Adipocyte Differentiation through Regulation of VEGFR2 Phosphorylation

  • Kim, Ji Soo;Kim, Won Kon;Oh, Kyoung-Jin;Lee, Eun-Woo;Han, Baek Soo;Lee, Sang Chul;Bae, Kwang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.645-650
    • /
    • 2019
  • Brown adipocytes have an important role in the regulation of energy balance through uncoupling protein-1 (UCP-1)-mediated nonshivering thermogenesis. Although brown adipocytes have been highlighted as a new therapeutic target for the treatment of metabolic diseases, such as obesity and type II diabetes in adult humans, the molecular mechanism underlying brown adipogenesis is not fully understood. We recently found that protein tyrosine phosphatase receptor type B (PTPRB) expression dramatically decreased during brown adipogenic differentiation. In this study, we investigated the functional roles of PTPRB and its regulatory mechanism during brown adipocyte differentiation. Ectopic expression of PTPRB led to a reduced brown adipocyte differentiation by suppressing the tyrosine phosphorylation of VEGFR2, whereas a catalytic inactive PTPRB mutant showed no effects on differentiation and phosphorylation. Consistently, the expression of brown adipocyte-related genes, such as UCP-1, $PGC-1{\alpha}$, PRDM16, $PPAR-{\gamma}$, and CIDEA, were significantly inhibited by PTPRB overexpression. Overall, these results suggest that PTPRB functions as a negative regulator of brown adipocyte differentiation through its phosphatase activity-dependent mechanism and may be used as a target protein for the regulation of obesity and type II diabetes.

Molecular Cloning of Adipose Tissue-specific Genes by cDNA Microarray

  • Kim, Kee-Hong;Moon, Yang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권12호
    • /
    • pp.1837-1841
    • /
    • 2003
  • In an attempt to isolate novel molecules that may play a regulatory role in adipocyte differentiation, we devised an experimental strategy to identify adipose tissue-specific genes by modifying cDNA microarray technique. We used genefilter membranes containing approximately 15,000 rat non-redundant EST clones of which 4,000 EST were representative clones of known genes and 11,000 ESTs were uncharacterized clones. A series of hybridization of genefilter membranes with cDNA probes prepared from various rat tissues and nucleic acids sequence analysis allowed us to identify two adipose-tissue specific genes, adipocyte-specific secretory factor (ADSF) and H-rev107. Verification of tissue-specific expression patterns of these two genes by Northern blot analysis showed that ADSF mRNA is exclusive expressed in adipose tissue and the H-rev107 mRNA is predominantly expressed in adipose tissue. Further analysis of gene expression of ADSF and H-rev107 during 3T3-L1 adipocyte differentiation revealed that the ADSF and H-rev107 gene expression patterns are closely associated with the adipocyte differentiation program, indicating their possible role in the regulation of adipose tissue development. Overall, we demonstrated an application of modified cDNA microarray technique in molecular cloning, resulting in identification of two novel adipose tissue-specific genes. This technique will also be used as a useful tool in identifying novel genes expressed in a tissue-specific manner.

지방세포분화에서의 replication factor C 단백질의 발현조절 (Expressional Regulation of Replication Factor C in Adipocyte Differentiation)

  • 조현국;김혜영;유현정;정재훈
    • 생명과학회지
    • /
    • 제21권2호
    • /
    • pp.202-210
    • /
    • 2011
  • 지방세포 분화 과정 중에 key regulator로서 기능을 하는 여러 전사조절인자(PPAR$\gamma$, C/EBP$\alpha$, SREBP, LXR)가 동정되었고, 주로 DNA 복제나 DNA 수선 단계에서 중요한 역할을 한다고 밝혀진 복제 조절인자인 RFC140이 지방세포 분화에도 중요한 인자임이 밝혀졌다. 이 연구에서 우리는 RFC140과 RFC38에 대한 발현조절을 확인하였으며, RFC140이 PPAR$\gamma$와의 단백질-단백질 결합을 통하여 PPAR$\gamma$에 의해 조절되는 유전자의 발현을 증가시킴을 확인하였다. 이러한 결과들은 특이적인 지방세포 전사인자에 의해 발현이 조절되는 RFC140과 RFC38이 지방세포의 분화과정에 필수적임을 제시한다.

Effects of novel chalcone derivatives on α-glucosidase, dipeptidyl peptidase-4, and adipocyte differentiation in vitro

  • Bak, Eun-Jung;Park, Hong-Gyu;Lee, Choong-Hwan;Lee, Tong-Il;Woo, Gye-Hyeong;Na, Young-Hwa;Yoo, Yun-Jung;Cha, Jeong-Heon
    • BMB Reports
    • /
    • 제44권6호
    • /
    • pp.410-414
    • /
    • 2011
  • Chana series are new chalcone derivatives. To evaluate the possibility of Chana series as therapeutic agents of type 2 diabetes, the inhibitory effects of Chana series on the activities of ${\alpha}$-glucosidase and DPP-4 were investigated using in vitro enzyme assays, and their effects on adipocyte differentiation were investigated in C3H10T1/2 cells. Chana 1 and Chana 7 among the Chana series showed significant inhibition of ${\alpha}$-glucosidase activity. In DPP-4 enzyme assay, Chana 1 exhibited the highest inhibitory activity while Chana 7 did not. In MTT assay, Chana 1 did not show significant cytotoxicity up to a concentration of $250{\mu}M$, whereas cytotoxicity was observed with Chana 7 at a concentration of $300{\mu}M$. In addition, Chana 1 induced adipocyte differentiation. Therefore, Chana 1 showed inhibitory effects on ${\alpha}$-glucosidase and DPP-4 as well as a stimulatory effect on adipocyte differentiation, suggesting that Chana 1 may be a potential beneficial agent for the treatment of type 2 diabetes.

Effects of quercetin on cell differentiation and adipogenesis in 3T3-L1 adipocytes

  • Hong, Seo Young;Ha, Ae Wha;Kim, Wookyoung
    • Nutrition Research and Practice
    • /
    • 제15권4호
    • /
    • pp.444-455
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Adipocytes undergo angiogenesis to receive nutrients and oxygen needed for adipocyte' growth and differentiation. No study relating quercetin with angiogenesis in adipocytes exists. Therefore, this study investigated the role of quercetin on adipogenesis in 3T3-L1 cells, acting through matrix metalloproteinases (MMPs). MATERIALS/METHODS: After proliferating preadipocytes into adipocytes, various quercetin concentrations were added to adipocytes, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to evaluate cell proliferation. Glycerol-3-phosphate dehydrogenase (GPDH) activity was investigated as an indicator of fat accumulation. The mRNA expressions of transcription factors related to adipocyte differentiation, CCAAT/enhancer-binding proteins (C/EBPs), peroxisomal proliferatoractivated receptors (PPAR)-γ, and adipocyte protein 2 (aP2), were investigated. The mRNA expressions of proteins related to angiogenesis, vascular endothelial growth factor (VEGF)-α, vascular endothelial growth factor receptor (VEGFR)-2, MMP-2, and MMP-9, were investigated. Enzyme activities and concentrations of MMP-2 and MMP-9 were also measured. RESULTS: Quercetin treatment suppressed fat accumulation and the expressions of adipocyte differentiation-related genes (C/EBPα, C/EBPβ, PPAR-γ, and aP2) in a concentration-dependent manner in 3T3-L1 cells. Quercetin treatments reduced the mRNA expressions of VEGF-α, VEGFR-2, MMP-2, and MMP-9 in 3T3-L1 cells. The activities and concentrations of MMP-2 and MMP-9 were also decreased significantly as the concentration of quercetin increased. CONCLUSIONS: The results confirm that quercetin inhibits adipose tissue differentiation and fat accumulation in 3T3-L1 cells, which could occur through inhibition of the angiogenesis process related to MMPs.

팔각회향 dichloromethane 분획물에 의한 지방세포 분화 억제 효과 (Inhibitory Effects of Illicium verum Hooker fil. Dichloromethane Fractions on Adipocyte Differentiation)

  • 정현영;정인교;김남주;윤희정;박정하;김병우;권현주
    • 생명과학회지
    • /
    • 제29권4호
    • /
    • pp.447-454
    • /
    • 2019
  • 비만은 에너지의 불균형으로 인하여 체내 지방조직에 지방이 축적되는 대사성질환으로 심혈관계 질환, 고혈압, 2형 당뇨, 고지혈증 및 각종 암의 발생 빈도를 증가시키는 요인이다. 지방의 축적은 지방전구세포가 지방세포로 분화하는 과정을 의미하는 adipogenesis라는 과정을 거쳐서 일어난다. 지방세포로의 분화는 다양한 호르몬과 전사인자들의 상호작용에 의해서 일어난다. 본 연구에서는 팔각회향이 항비만 소재로 활용 가능한지 확인하기 위해, 팔각회향 물 추출물을 분획하여 지방축적 억제 활성이 좋은 dichloromethane층을 선정하였다. 3T3-L1 지방전구세포가 성숙한 지방세포로 분화할 때 팔각회향 dichloromethane 층이 어떠한 기전으로 분화를 조절하는지 확인한 결과, 지방세포 분화에서 중요한 전사인자인 C/EBP family, $PPAR{\gamma}$의 발현이 억제되었고, 지방세포 최종 분화 마커로 알려져 있는 FAS 및 LPL의 발현 또한 감소되었다. 또한 G1기에서의 세포주기 정지를 통해 지방세포 분화 단계에서 필수적인 mitotic clonal expansion 단계를 억제한다는 결과를 얻었다. 이러한 연구 결과는 팔각회향이 항비만 효과를 가지는 천연물 소재로의 활용가능성을 보여주는 기초 자료가 될 것으로 사료된다.

오차산감방이 3T3-L1 adipocyte의 leptin 및 leptin receptor 함량과 differentiation에 미치는 영향 (The Effects of Oryungsan-gagampang on Leptin Levels, Leptin Receptor Levels and Differentiation of 3T3-L1 Adipocyte)

  • 강중원;최도영;박동석;이재동
    • 대한한의학회지
    • /
    • 제26권2호
    • /
    • pp.241-251
    • /
    • 2005
  • Objectives: This experimental study was designed to investig:ue the effects of Oryungsan-gagampang on leptin and leptin receptor levels and differentiation of 3T3-L1 adipocyte. Methods: After 3T3-L1 adipocytes were incubated with various concentrations of Oryungsan-gagampang and Reductil(r) for 7 days, leptin and leptin receptor levels in 3T3-Ll adipocytes were measured by ELISA. To elucidate the mechanism of inhibitory effects of Oryungsan-gagampang on obesity, the 3T3-L1 adipocytes after oil red 0 staining were taken by digital photo system. Results: 1. Oryungsan-gagampang $1,000{\mu}g/ml$ significantly increased leptin levels in 3T3-L1 adipocytes in comparison with the control group (p<0.05), and Oryungsan-gagampang 0.1 10, $1,000{\mu}g/ml$ significantly increased leptin receptor levels in 3T3-L1 adipocytes in comparison with the control group (p<0.05). 2. Oryungsan-gagampang inhibited of differentiation of 3T3-L1 adipocytes. Conclusions: Oryungsan-gagampang showed significant effects on inhibiting differentiation of 3T3-Ll adipocytes, and increasing leptin levels and leptin receptor levels in 3T3-L1 adipocytes. Therefore, Oryungsan-gagampang could be used to treat obesity, but further studies are required.

  • PDF

Fat Cell Formation and Obesity-Related Diseases

  • Kawada, Teruo
    • Preventive Nutrition and Food Science
    • /
    • 제8권1호
    • /
    • pp.105-112
    • /
    • 2003
  • Animals possess a highly sophisticated mechanism of storing energy in adipose tissue inside their bodies. However, in humans it has been clarified that adipocyte (fat cell), which composes the body fat (adipose) tissues, development and the extent of subsequent fat accumulation are closely associated with the occurrence and advancement of various common diseases (e.g., type-2 diabetes, coronary artery disease, and hypertension) resulting from obesity. Recent exciting progress in clinical and biochemical studies of adipocytes has rapidly clarified the functions of adipocytes and adipose tissue. Interesting findings are the function of white adipocytes as "secreting cells" and the molecular mechanism undelying adipocyte differentiation at the transcriptional level in relation to nuclear receptors. Consequently, the adipose tissue is being targeted for the prevention or treatment of many common diseases. In this review, I will focus on recent information on characteristics of adipocytes and the relationship between obesity and common obesity-related diseases. diseases.

모시풀 추출물이 지방세포분화와 혈관신생에 미치는 영향 (Effect of Boehmeria nivea on Adipocyte Differentiation and Angiogenesis)

  • 정민유;김성희;최효경;박재호;황진택
    • KSBB Journal
    • /
    • 제31권3호
    • /
    • pp.145-150
    • /
    • 2016
  • Boehmeria nivea (L.) Gaud., a flowering plant, has been widely cultivated in Asian countries including Korea. It has been reported that B. nivea exhibits health beneficial effects for the prevention of inflammation, oxidative stress, and virus-related diseases. In this study, we evaluated the inhibitory effect of B. nivea on adipocyte differentiation and angiogenesis. DPPH radical scavenging activities of 70% ethanol extract of B. nivea (EBN) and water extract of B. nivea (WBN) were $90.8{\pm}1.1%$ and $20{\pm}6.9%$, respectively. EBN was also effective in the reduction of adipocyte differentiation in 3T3-L1 cells. We next examined the transcriptional activity of peroxisome proliferator-activated receptor gamma ($PPAR-{\gamma}$), a pivotal target for anti-obesity. We found that treatment with rosiglitazone induced the transactivation of $PPAR-{\gamma}$. Under the same condition, $800{\mu}g/mL$ EBN reduced the transactivation of $PPAR-{\gamma}$ in rosiglitazone-induced cells. These results demonstrate that EBN-inhibited adipocyte differentiation was accompanied by $PPAR-{\gamma}$ inhibition. The study also tested whether EBN exhibits an anti-angiogenic effect by inhibiting tube formation in HUVECs. We found that EBN effectively inhibits tube formation, suggesting that EBN exhibited an anti-angiogenic effect. Taken together, B. nivea can be used as a functional food for the prevention of obesity and angiogenesis-related diseases including cancer.

Chitosan Oligosaccharides Inhibit Adipogenesis in 3T3-L1 Adipocytes

  • Cho, Eun-Jae;Rahman, Atiar;Kim, Sang-Woo;Baek, Yu-Mi;Hwang, Hye-Jin;Oh, Jung-Young;Hwang, Hee-Sun;Lee, Sung-Hak;Yun, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.80-87
    • /
    • 2008
  • The 3T3-L1 cell line is a well-established and commonly used in vitro model to assess adipocyte differentiation. Over the course of several days, confluent 3T3-L1 cells can be converted to adipocytes in the presence of an adipogenic cocktail. In this study, the effects of chitosan oligosaccharides (CO) on adipocyte differentiation of 3T3-L1 cells were studied. The CO significantly decreased lipid accumulation, a marker of adipogenesis, in a dose-dependent manner. The low molecular mass CO (1-3 kDa) were the most effective at inhibiting adipocyte differentiation. Moreover, mRNA expression levels of both CCAAT/enhancer-binding protein (C/EBP) ${\alpha}$ and peroxisome proliferator-activated receptor (PPAR) ${\gamma}$, the key adipogenic transcription factors, were markedly decreased by CO treatments. CO also significantly down regulated adipogenic marker proteins such as leptin, adiponectin, and resistin. Our results suggest a role for CO as antiobesity agents by inhibiting adipocyte differentiation mediated through the down regulated expression of adipogenic transcription factors and other specific genes.