• Title/Summary/Keyword: Adiabatic temperature

Search Result 408, Processing Time 0.026 seconds

Effect of a Magnetic Field on Mixed Convection of a Nanofluid in a Square Cavity

  • Sheikhzadeh, G.A.;Sebdani, S. Mazrouei;Mahmoodi, M.;Safaeizadeh, Elham;Hashemi, S.E.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.321-325
    • /
    • 2013
  • The problem of mixed convection in a differentially heated lid-driven square cavity filled with Cu-water nanofluid under effect of a magnetic field is investigated numerically. The left and right walls of the cavity are kept at temperatures of $T_h$ and $T_c$ respectively while the horizontal walls are adiabatic. The top wall of the cavity moves in own plane from left to right. The effects of some pertinent parameters such as Richardson number (ranging from 0.1 to 10), the volume fraction of the nanoparticles (ranging 0 to 0.1) and the Hartmann number (ranging from 0 to 60) on the fluid flow and temperature fields and the rate of heat transfer in the cavity are investigated. It must be noted that in all calculations the Prandtl number of water as the pure fluid is kept at 6.8, while the Grashof number is considered fixed at 104. The obtained results show that the rate of heat transfer increases with an increase of the Reynolds number, while but it decreases with increase in the Hartmann number. Moreover it is found that based the Richardson and Hartmann numbers by increase in volume fraction of the nanoparticles the rate of heat transfer can be enhanced or deteriorated compared to the based fluid.

DESIGN AND APPLICATION OF A SINGLE-BEAM GAMMA DENSITOMETER FOR VOID FRACTION MEASUREMENT IN A SMALL DIAMETER STAINLESS STEEL PIPE IN A CRITICAL FLOW CONDITION

  • Park, Hyun-Sik;Chung, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.349-358
    • /
    • 2007
  • A single-beam gamma densitometer is utilized to measure the average void fraction in a small diameter stainless steel pipe under critical flow conditions. A typical design of a single-beam gamma densitometer is composed of a sealed gammaray source, a collimator, a scintillation detector, and a data acquisition system that includes an amplifier and a single channel analyzer. It is operated in the count mode and can be calibrated with a test pipe and various types of phantoms made of polyethylene. A good average void fraction is obtained for a small diameter pipe with various flow regimes of the core, annular, stratified, and bubbly flows. Several factors influencing the performance of the gamma densitometer are examined, including the distance between the source and the detector, the measuring time, and the ambient temperature. The void fraction is measured during an adiabatic downward two-phase critical flow in a vertical pipe. The test pipe has an inner diameter of 10.9 mm and a thickness of 3.2 mm. The average void fraction was reasonably measured for a two-phase critical flow in the presence of nitrogen gas.

Experimental Study on the Combustion Characteristics of Magnesium using Infrared Thermography and FE-SEM (적외선 열화상법 및 FE-SEM을 활용한 마그네슘 연소특성에 관한 실험적 연구)

  • Lee, Jun-Sik;Nam, Ki-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.927-934
    • /
    • 2020
  • Magnesium powder has been widely used in various industries because it is light weight and extremely high mechanical strength including aeronautics and chemicals. However, magnesium, as a combustible metal, poses serious safety issues such as fires and explosions if it is not managed properly. Especially, magnesium's max adiabatic flame temperature is 3,340℃ and it is impossible to extinguish it by using water, CO2 and Halonagents. The aim of this study is to identify the combustion characteristics of magnesium powder. We carried out a combustion experiment, using 1 kg of magnesium (purity > 99 %, particle < 150 ㎛). The features of the magnesium burning process were scrutinized using infrared thermal image analysis. Also, a field-emission scanning electron microscope (FE-SEM) were used employed to analyze particulate composites and properties. It concludes the significant tendency of magnesium fire and light, combustion carbide's particle characteristics. This study contributes to make better prevention and response manners to magnesium fires, as well as fire investigation measures.

Computer Simulation for the Thermal Analysis of the Energy Storage Board (에너지 축열보드 열해석을 위한 컴퓨터 수치해석)

  • 강용혁;엄태인;곽희열
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.224-232
    • /
    • 1999
  • Latent heat storage system using micro-encapsuled phase change material is effective method for floor heating of house and building. The temperature profile in capsule block and flow rate of hot water are important parameters for the development of heat storage system. In the present study, a mathematical model based on 3-D, non-steady state, Navier-Stokes equations, scalar conservation equations and turbulence model ($\kappa$-$\varepsilon$), is used to predict the temperature profiles in capsule and the velocity vectors in hot water pipe. The multi-block grids and fine grids embedding are used to join the circle in hot water pipe and square in capsule block. The phase change process of the capsule is quite complex not only because the size of phase change material is very small, but also because phase change material is mixed with the cement to form thermal storage block. In calculation, it's assumed that the phenomena of phase change is limited only the thermal properties of phase change material and the change of boundary is not happened in capsule. The purpose of this study is to calculate the temperature profiles in capsule block and velocity vectors in hot water pipe using the numerical calculation. Two kinds of thermal boundary condition were considered, the first (case 1) is the adiabatic condition for the both outside surfaces of the wall, the second (case 2) is the case in which one surface is natural convection with atmosphere and another surface is adaibatic. Calculation results are shown that the temperature profile in capsule block for case 1 is higher than that for case 2 due to less heat loss in adaibatic surface. Specially, in the domain of near Y=0, the difference of temperature is greater in case 1 than in case 2. The detailed experimental data of capsule block on the temperature profile and the thermal properties such as specific heat and coefficient of heat transfer with the various temperature are required to predict more exact phenomena of heat transfer.

  • PDF

Observation of Ignition Characteristics of Coals with Different Moisture Content in Laminar Flow Reactor (층류 반응기를 이용한 수분함량에 따른 석탄 휘발분의 점화 특성에 관한 연구)

  • Kim, Jae-Dong;Jung, Sung-Jae;Kim, Gyu-Bo;Chang, Young-June;Song, Ju-Hun;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.451-457
    • /
    • 2011
  • The main objective of this study is to investigate the variation in the ignition characteristics of coals as a function of moisture content in a laminar flow reactor (LFR) equipped with a fuel moisture micro-supplier designed by the Pusan Clean Coal Center. The volatile ignition position and time were observed experimentally when a pulverized coal with moisture was fed into the LFR under burning conditions similar to those at the exit of the pulverizer and real boiler. The reaction-zone temperature along the centerline of the reactor was measured with a $70-{\mu}m$, R-type thermocouple. For different moisture contents, the volatile ignition position was determined based on an average of 15 to 20 images captured by a CCD camera using a proprietary image-processing technique. The reaction zone decreased proportionally as a function of the moisture content. As the moisture content increased, the volatile ignition positions were 2.92, 3.36, 3.96, and 4.65 mm corresponding to ignition times of 1.46, 1.68, 2.00, and 2.33 ms, respectively. These results indicate that the ignition position and time increased exponentially. We also calculated the ignition-delay time derived from the adiabatic thermal explosion. It showed a trend that was similar to that of the experimental data.

Fundamental Properties of the Concrete Incorporating Coarse Particle Cement and Fly Ash (조립시멘트와 플라이애시를 조합 사용한 콘크리트의 기초적 특성)

  • Lee, Chung-Sub;Jang, Duk-Bae;Cha, Wan-Ho;Kwon, O-Bong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.553-556
    • /
    • 2008
  • This study analyzed is to investigate the effect of the combined use of fly ash and coarse particle cement(RCC) collected in particle classification method during ordinary portland cement(OPC) on the fundamental properties of concrete. Totally 16 batches of the concrete was fabricated vary the contends of FA and RCC. As results of experiment, in the case of flow, the more the contents of RCC, the larger the flow. And the more the contents of FA displacement rate increased, the less the flow. As for simple adiabatic temperature rise due to the RCC and FA contents, it decreased with the increase of them. And particularly in the case of RCC 30% + FA 30%, temperature rise amount, was very low. Compressive strength decreased in proportion to increase of the contents of FA and RCC. And strength ratio of the concrete incorporating FA and RCC for plain concrete at 28 days was 88%${\sim}$98%, which was relatively good results.

  • PDF

Mix Design and Physical Properties of Concrete Used in Seongdeok Multi-purpose Dam (성덕 다목적댐 콘크리트의 배합설계 및 역학적 특성)

  • Kim, Jin-Keun;Jang, Bong-Seok;Ha, Jae-Dam;Ryu, Jong-Hyun;Go, Suk-Woo;Kim, Jeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.517-520
    • /
    • 2008
  • Gravity dam use self weight to stand external force like hydraulic pressure. In general, gravity dam concrete is divided into internal and external concrete. Seongdeok dam is gravity dam which is being constructed in Cheongsong-gun, Gyeonsangbuk-do. And upstream cofferdam was constructed to examine the temperature crack due to hydration heat and to decide the height of placement. In this study, we examined the mix design of internal/external concrete and physical properties(compressive strength, adiabatic temperature rise). And we also performed laboratory tests to verify exothermic properties. Lastly, we measured the hydration heat and thermal stress of upstream cofferdam.

  • PDF

Melt-solid interface and segregation in horizontal bridgman growth using 2 - and 3 - dimensional pseudo - steady - state model (2차원 및 3차원 정상상태 모델에 의한 수평브릿지만 결정성장에서의 고 - 액 계면과 편석)

  • 민병수;김도현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.306-317
    • /
    • 1995
  • Abstract Gallium arsenide crystal is usually grown from the melt by the horizontal Bridgman method. We constructed pseudo - steady - state model for crystal growth of GaAs which inclue melt, crystal and the free interface. Mathematical equations of the model were solved for flow, temperature, and concentration field in the melt and temperature field in the crystal. The location and shape of the interface were also solved simultaneously. In 2 - dimensional model, the shape of the interface is flat with adiabatic thermal boundary condition, but it becomes curved with completely conducting thermal boundary condition. In 3 - dimensional model, the interface is less curved than 2 - dimensional case and the flow intensity is similar to that of 2 - dimensional case. With the increase of flow intensity vertical segregation shows maximum value in both 2 - and 3 - D model. However, the maximum value occurs in lower flow intensity in 2 - D model because the interface is more curved for the same flow intensity.

  • PDF

Performance analysis of an experimental plant factory

  • Ryu, Dong-Ki;Kang, Sin-Woo;Chung, Sun-Ok;Hong, Soon-Jung
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.4
    • /
    • pp.395-403
    • /
    • 2013
  • Plant factory has drawn attention in many countries in the world due to capability of environmental control not only for better yield and quality, but also for increase in functional and medicinal components of the products. In this paper, an experimental plant factory was constructed for various tests under different environmental conditions, and the operations were evaluated. A production room was constructed with adiabatic materials with dimensions of $6,900{\times}3,000{\times}2,500$ mm ($L{\times}W{\times}H$). Four sets of $2,890{\times}600{\times}2,320$ mm ($L{\times}W{\times}H$) production frame unit, each with 9 light-installed beds and an aeroponic fertigation system, resulting in 36 beds, were prepared. Accuracy and response were evaluated for each environmental control component with and without crops. Air temperature, humidity, $CO_2$ concentration, light intensity, frequency, and duty ratio, fertigation rate and scheduling were controllable from a main control computer through wireless communication devices. When the plant factory was operated without crop condition, the response times were 8 minutes for change in temperature from 20 to $15^{\circ}C$ and 20 minutes from 15 to $20^{\circ}C$; 7 minutes for change in humidity from 40 to 65%; and 4 minutes for change in $CO_2$ concentration from 450 to 1000 ppm. When operated for 24 hours with crop cultivation; average, maximum, and minimum values of temperatures were 20.06, 20.8, and $18.8^{\circ}C$; humidity were 66.72, 69.37, and 63.73%; $CO_2$ concentrations were 1017, 1168, and 911 ppm, respectively. Photosynthetic Photon Flux Density was increased as the distance from the light source decreased, but variability was greater at shorter distances. Results of the study would provide useful information for efficient application of the plant factory and to investigate the optimum environment for crop growth through various experiments.

Effects of Several Factors on the Characteristics of Fe-Al Alloy Preform Manufactured by Reactive Sintering Process (반응소결법에 의해 제조된 Fe-Al합금 예비성형체의 특성에 미치는 제인자의 영향)

  • Joo, Hyung-Gon;Park, Sung-Hyuk;Joo, Sung-Min;Choi, Dap-Chun
    • Journal of Korea Foundry Society
    • /
    • v.17 no.1
    • /
    • pp.58-66
    • /
    • 1997
  • The main aim of the present study is to investigate the effects of several processing parameters on the characteristics of Fe-Al alloy preform manufactured by reactive sintering process. The processing parameters include preform composition of 25, 40, 50, 60 and 75at.%Al, compacting pressure of 10, 20 and $30kg/cm^2$, and mean Al particle size of 29, 66 and $187{\mu}m$. Mean Fe particle size was $39{\mu}m$. The density of preform processed under same compacting pressure was not affected by changing Al composition. The preform with Al compositions of 25, 40, 50 and 60at.% Al swelled after reactive sintering process, thus having lower density than the green compacts. The preform with Al compositions of 75at.%Al, however, shrinked after reactive sintering process, thus having higher density than the green compacts. Ignition temperature increased with increasing compacting pressure, and increased with increasing Al composition at the fixed compacting pressure. And adiabatic temperature decreased with increasing compacting pressure at the fixed Al composition, and increased with increasing Al composition at the fixed compacting pressure. The size of compound particles increased with increasing Al composition. Especially, The size of compound particles increased largely in the case of 75at.%Al. It was observed that 50at.%Al preform have three dimentional network structure having a homogeneous and fine decreasing Al particle size.

  • PDF