• Title/Summary/Keyword: Adiabatic temperature

Search Result 408, Processing Time 0.025 seconds

Properties of Adiabatic Temperature Rising of Concrete Using Coal Gasification Slag as Fine Aggregate (석탄 가스화 용융 슬래그를 잔골재로 사용한 콘크리트 단열온도상승 특성)

  • Han, Jun-Hui;Lim, Gun-Su;Chi, Il-Kyeung;Kim, Jung;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.114-115
    • /
    • 2021
  • The research team conducted a series of studies to use CGS as fine aggregate for concrete. In this paper, through the adiabatic temperature rising test, CGS' hydration heating performance and its usability as a mass concrete hydration heating agent were reviewed. According to the analysis, the maximum temperature of the mix of OPC 100 was 53.7℃, and the temperature of CGS 50% was 45.2℃, which was 8.5℃ lower than the OPC 100.

  • PDF

Measurement of Adiabatic Wall Temperature in Compressible High Speed Impinging jets using Infra-red Camera (적외선 카메라를 이용한 압축성 고속 충돌 제트에서의 단열 벽면 온도 특성 연구)

  • Kim, Beom-Seok;Shin, Sang-Woo;Yu, Man-Sun;Cho, Hyung-Hee;Lee, Jang-Woo;Bae, Ju-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.714-719
    • /
    • 2007
  • In this paper, we report experimental investigations on measurement of adiabatic wall temperature on a flat 2-D plate of high-speed impinging jet made by circular-shape nozzle at steady state condition using infra-red camera. Experiments have been conducted for the Reynolds number of 187,000 according to the change of nozzle-to-plate distance. Dimensionless number, recovery factor, has been used to represent the measured adiabatic wall temperature. And we compared the result obtained by using infra-red camera with that obtained by using thermocouple.

Film Cooling from Two Rows of Holes with Opposite Orientation Angles: Blowing Ratio Effects (반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성 : 분사비의 영향)

  • Ahn, J.;Jung, I.S.;Lee, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.113-118
    • /
    • 2000
  • Experimental results describing the effects of blowing ratio on film cooling from two rows of holes with opposite orientation angles are presented. The inclination angle was fixed at $35^{\circ}$ and the orientation angles were set to be $45^{\circ}$ for downstream row. and $-45^{\circ}$ for upsream row. The studied blowing ratios were 0.5, 1.0 and 2.0. The boundary layer temperature distributions were measured using thermocouple at two downstream loundary layer temperature distributions were measured using thermocouple at two downstream locations. Detailed adiabatic film cooling effectiveness and heat transfer coefficient distributions were measured with TLC(Thermochromic Liquid Crystal). The adiabatic film cooling effectiveness and heat transfer coefficient distributions are discussed in connection with the injectant behaviors inferred from the boundary layer temperature distributions. Film cooling performance, represented by heat flux was calculated with the adiabatic film cooling effectiveness and heat transfer coefficient data.

  • PDF

The Optimum Design Conditions of Stirling Engines Using The Ideal Adiabatic Model (이상적인 단열모델에 의한 스터링기관의 최적설계조건)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.656-663
    • /
    • 1990
  • To investigate the optimum design conditions of Stirling Engines at the preliminary design stage, comparative study between adoabatoc analysis based on an approximate analytical solution to the Ideal Adiabatic Model and the existing isothermal analysis has been carried out. The optimum phase angle obtained from adiabatic analysis to achieve the maximum work with given combination of design parameters is greater than that from isothermal analysis, while the optimum swept volume ratio is smaller. Effect of variation in the temperature ratio on the work parameter is proved to be stronger in adiabatic analysis. On the contrary, the work parameter by adiabatic analysis is less sensitive to a change in the dead volume ratio. Especially in adiabatic analysis there exists the optimum dead volume ratio maximizing the work parameter, which may provide a lower limit of it. Considering that the adiabatic model is more reasonable, signifiant differences between two methods lead to the conclusion that adiabatic analysis is preferable to isothermal one for the preliminary design of Stirling Engines.

A Study on the Practicality of Surface Adibatic Curing Method for Cold Weathering Construction (동절기 공사를 위한 표면단열 양생방법의 실용화에 관한 연구)

  • Lee, Do-Bum;Choi, Il-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.491-494
    • /
    • 2005
  • This study was carried out to examine application of surface adiabatic curing method in slightly cold weathering period. So, early aged freezing damage and compressive strength of concrete were examined through temperature analysis of construction concrete. Temperature analysis was carried out according to the average temperature, concrete placement completion time and surface adiabatic curing method. Analysis results show that additional curing plans are demanded in concrete construction below 0$^{circ}C$, surface adiabatic curing method is could apply in the average temperature more than -2$^{circ}C$ and curing method as heating are needed under -2$^{circ}C$.

  • PDF

Effects of multi-walled carbon nanotubes on the hydration heat properties of cement composites

  • Ha, Sung-Jin;Rajadurai, Rajagopalan Sam;Kang, Su-Tae
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.439-450
    • /
    • 2021
  • In recent years, nano-reinforcing materials are widely utilized in cement composites due to their unique multifunctional properties. This study incorporated multi-walled carbon nanotubes (MWCNTs) into the cementitious composites at ratios of 0.1%, 0.3%, and 0.5%, and investigated their influence on the flowability, mechanical strength, and hydration heat properties. The addition of MWCNTs enhanced the compressive and split tensile strengths approximately by 18-51%. In the semi-adiabatic temperature rise test, the internal hydration heat of the composites reduced by 5%, 9%, and 12% with the increase of MWCNTs in 0.1%, 0.3%, and 0.5%. This study further performed hydration heat analysis and estimated the adiabatic temperature rise, thermal stress, and thermal crack index. The internal hydration heat of the concrete decreased by 5%, 10%, and 13% with the increase of MWCNTs. The thermal stress of the concrete decreased with increase in the addition of MWCNTs, and the obtained temperature crack index was effective in controlling the thermal cracks.

Evaluation of early age mechanical properties of concrete in real structure

  • Wang, Jiachun;Yan, Peiyu
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.53-64
    • /
    • 2013
  • The curing temperature is known to influence the rate of mechanical properties development of early age concrete. In realistic sites the temperature of concrete is not isothermal $20^{\circ}C$, so the paper measured adiabatic temperature increases of four different concretes to understand heat emission during hydration at early age. The temperature-matching curing schedule in accordance with adiabatic temperature increase is adopted to simulate the situation in real massive concrete. The specimens under temperature-matching curing are subjected to realistic temperature for first few days as well as adiabatic condition. The mechanical properties including compressive strength, splitting strength and modulus of elasticity of concretes cured under both temperature-matching curing and isothermal $20^{\circ}C$ curing are investigated. The results denote that comparing temperature-matching curing with isothermal $20^{\circ}C$ curing, the early age concretes mechanical properties are obviously improved, but the later mechanical properties of concretes with pure Portland and containing silica fume are decreased a little and still increased for concretes containing fly ash and slag. On this basement using an equivalent age approach evaluates mechanical properties of early age concrete in real structures, the model parameters are defined by the compressive strength test, and can predict the compressive strength, splitting strength and elasticity modulus through measuring or calculating by finite element method the concreted temperature at early age, and the method is valid, which is applied in a concrete wall for evaluation of crack risking.

Evaulation of Adiabatic Temperature Rise for Concrete with Blast-Furnace Slag replacement (고로슬래그 미분말 치환율에 따른 콘크리트의 단열온도상승 평가)

  • Kim, Joo Hyung;Lee, Do Heun;Jung, Sang Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • Recently, the interest is increasing about the eco-friendly concrete. Accordingly, the blast furnace slag(BFS), a by-product of industry is known for improving the durability through compaction in concrete and is expanding the use. The research about BFS in concrete be accomplished frequently. In this study, we should know the hydration characteristic of BFS concrete the through the adiabatic temperature rise test due to the replacement of a variety of BFS. In addition, we produced the regression analysis factors through the test result and analyzied the effect for the replacement of BFS. According to test results, the compressive strength showed a slight degradation or equal and the the adiabatic temperature rise figure and rising factors are went down for rising replacment of BFS. In the future, the study about the adiabatic temperature rise equation for the various replacement of BFS and binder is considered necessary.

  • PDF

Prediction of Serrated Chip Formation in High Speed Metal Cutting (고속 절삭공정 중 톱니형 칩 생성 예측)

  • 임성한;오수익
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.358-363
    • /
    • 2003
  • Adiabatic shear bands have been observed in the serrated chip during high strain rate metal cutting process of medium carbon steel and titanium alloy The recent microscopic observations have shown that dynamic recrystallization occurs in the narrow adiabatic shear bands. However the conventional flow stress models such as the Zerilli-Armstrong model and the Johnson-Cook model, in general, do not predict the occurrence of dynamic recrystallization (DRX) in the shear bands and the thermal softening effects accompanied by DRX. In the present study, a strain hardening and thermal softening model is proposed to predict the adiabatic shear localized chip formation. The finite element analysis (FEA) with this proposed flow stress model shows that the temperature of the shear band during cutting process rises above 0.5Τ$_{m}$. The simulation shows that temperature rises to initiate dynamic recrystallization, dynamic recrystallization lowers the flow stress, and that adiabatic shear localized band and the serrated chip are formed. FEA is also used to predict and compare chip formations of two flow stress models in orthogonal metal cutting with AISI 1045. The predictions of the FEA agreed well with the experimental measurements.s.

Cooling Characteristics on the Forced Convection of an Array of Electronic Components in Channel Flow (I) - The Effect of H/B (without the Heat Sink) - (채널 유동장 내에 배열된 전자부품의 강제대류 냉각 특성에 관한 연구(I) -채널과 발열부품의 높이 비(H/B)의 영향(히트싱크가 부착되지 않은 경우)-)

  • Kim, Kwang-Soo;Yang, Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • Present study is concerned with an experimental study on the cooling characteristics of heat-generating components arranged in channels which are made by printed circuit boards. To assess the thermal performance of the heat-generating components arranged by $5\times11$ in flow channel, three variables are used: the velocity of the fluid at the entrance, the height of channel, and row number of the component. The cooling characteristics of the heat-generating components such as the surface temperature rise, the adiabatic temperature rise, the adiabatic heat transfer coefficient, and the effect of thermal wake are compared with the result of the experiment and the numerical analysis. Based on the experiment analysis, some conclusions can be drawn: First of all, the experiment and numerical analysis are identical comparatively; the heat transfer coefficient increases as H/B decreases. Howeve., when H/B is over 7.2, the effect of H/B is rather trivial. The effect is the biggest at the first component from the entrance, and it decreases until the fully developed flow, where it becomes very consistent. The thermal wake function calculated for each row decreases as H/B increases.