• Title/Summary/Keyword: Adiabatic Temperature Rise Properties

Search Result 53, Processing Time 0.028 seconds

Study on Precooling of Concrete Using Ice and Cooling Water (얼음과 냉각수를 이용한 콘크리트의 프리쿨링에 관한 연구)

  • 정철헌;박장호;이순환
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.95-102
    • /
    • 2000
  • Crack control due to temperature is an important factor for the mass concrete structure. Pre-cooling is the effective system to reduce the highest temperature of mass concrete. In this study, for pre-cooling, cooling water, cooling water with ics flake are used. The results of a series of experimental studies indicate that the changes in properties of fresh concrete after cooling are of low degree, and compressive strength of concrete is changed very little by cooling. The adiabatic temperature rise is also measured with pre-cooling concrete specimens. It is shown that hydration heat characteristics of cement and concrete were largely affected by pre-cooling.

Fundamental Properties and Adiabatic Temperature Rise of Concrete with the Combination of Mineral and Chemical Admixture (혼화재료의 조합사용에 따른 콘크리트의 기초물성 및 단열온도상승 특성)

  • Jeon Chung Keun;Kim Jong;Shin Dong-An;Yoon Gi-Won;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.345-348
    • /
    • 2005
  • This paper presents the result of adiabetic temperature rise and fundamental properties of concrete combining admixtures. According to results, difference of setting time with I5.5hours is observed between S-P and R-F30 mixture. Based on the adiabetic temperature rise test, 8$^{circ}C$of heat producted occurs between E-P and R-F30 mixture. is applied to estimate the temperature rising under adiabetic curing condition, which exhibits closer consistency with tested value. The function mentioned above can account for the effect of dormant period in hydration process at early stage on hydration heat production. It reveals that the consideration of placing layer based on the mixture adjustment(E-P mixture at top layer and R-F30 mixture at bottom layer) in mass concreting will contribute to reduce hydration heat as well as alleviate tensile stress discrepancy between placing layer.

  • PDF

Physical and Mechanical Properties of Low Carbon Green Concrete (저탄소 그린콘크리트의 물리·역학적 특성)

  • Cho, Il Ho;Sung, Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.123-128
    • /
    • 2013
  • This study was performed to evaluate the slump flow, air content, setting time, compressive strength, adiabatic temperature rise and diffusion coefficient of chloride used ordinary portland cement, crushed coarse aggregate, crushed sand, river sand, fly ash, limestone powder, blast furnace slag powder and superplasticizer to find optimum mix design of low carbon green concrete for structures. The performances of low carbon green concrete used fly ash, limestone powder and blast furnace slag powder were remarkably improved. This fact is expected to have economical effects in the manufacture of low carbon green concrete for structures. Accordingly, the fly ash, limestone powder and blast furnace slag powder can be used for low carbon green concrete material.

Hydration heat and autogenous shrinkage properties of silica-fume included mass concrete (실리카퓸을 사용한 매스콘크리트의 수화열과 자기수축 특성)

  • Kim, Chin-Yong;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.489-492
    • /
    • 2008
  • Adiabatic temperature rise and autogenous shrinkage experiments were performed for three silica-fume included mass concrete mixtures and a reference mixture without silica-fume, in order to investigate the influence of silica-fume on the hydration heat and autogenous shrinkage properties of mass concrete, and to examine applicability of silica-fume to mass concrete. It was revealed from the experiment that, for mass concrete, the rate of hydration was hardly increased while the maximum adiabatic temperature rise decreased about 5$^{\circ}$C by the addition of silica-fume, and the amount of autogenous shrinkage was almost the same regardless of silica-fume replacement. These facts imply that silica-fume can enhance the resistance of mass concrete to temperature cracking as well as the durability.

  • PDF

The Effect of Properties of The Compressive Strength of High-Strength Concrete under High Temperature conditions at an Early Age (초기고온이력이 고강도콘크리트의 압축강도특성에 미치는 영향)

  • Ham, Eun-Young;Kim, Gyu-Yong;Koo, Kyung-Mo;Yoon, Min-Ho;Yoo, Jea-Kang;Miyauchi, Hiroyuki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.115-116
    • /
    • 2013
  • Property of the compressive strength of high strength concrete was investigated in adiabatic temperature history considering hot-weather conditions. As a result, compressive strength of specimens subjected to high temperature history showed more than 120% at 3days of age compare to standard cured specimens. But, at 91days of age showed the incidence of strength less than 100%.

  • PDF

Heat of hydration characteristics on high-performance concrete for large dimensional tunnel linings (대단면 터널 라이닝 적용 고성능 콘크리트의 수화열 특성)

  • Min, Kyung-Hwan;Jung, Hyung-Chul;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • In this study, experiments of development and application of 50 MPa high-performance concrete are performed for large dimensional tunnel linings. In order to produce 50MPa high-performance concrete, eight optimal mixtures replacing with fly ash and ground granulated blast furnace slag up to 50 percent of type I Portland cement were selected then tests for mechanical properties and simple adiabatic temperature rise tests were carried out. And in order to assess the quantitative characteristics of heat of hydrations of developed mixtures, three mixtures that the type I Portland cement (OPC) and each one mixture of binary and ternary mixtures (BS30, F15S35) were reselected, then the adiabatic temperature rise tests and mock-up tests were performed. Consequently, the comparisons between the results of mock-up tests and finite element analysis can be enhanced the reliability of analyzing routines of thermal behaviours of the developed high-performance concrete.

Models for Hydration Heat Development and Mechanical Properties of Ultra High Performance Concrete (초고성능 콘크리트의 수화발열 및 역학적 특성 모델)

  • Cha, Soo-Won;Kim, Ki-Hyun;Kim, Sung-Wook;Park, Jung-Jun;Bae, Sung-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • Concrete has excellent mechanical properties, high durability, and economical advantages over other construction materials. Nevertheless, it is not an easy task to apply concrete to long span bridges. That's because concrete has a low strength to weight ratio. Ultra high performance concrete (UHPC) has a very high strength and hence it allows use of relatively small section for the same design load. Thus UHPC is a promising material to be utilized in the construction of long span bridges. However, there is a possibility of crack generation during the curing process due to the high binder ratio of UHPC and a consequent large amount of hydration heat. In this study, adiabatic temperature rise and mechanical properties were modeled for the stress analysis due to hydration heat. Adiabatic temperature rise curve of UHPC was modeled superposing 2-parameter model and S-shaped function, and the Arrhenius constant was determined using the concept of equivalent time. The results are verified by the mock-up test measuring the temperature development due to the hydration of UHPC. In addition, models for mechanical properties such as elastic modulus, tensile strength and compressive strength were developed based on the test results from conventional load test and ultrasonic pulse velocity measurement.

Hydration Heat Properties of High Flowing Self-Compacting Concrete with Normal Strength (보통강도 고유동 자기충전 콘크리트의 수화발열 특성)

  • Choi, Yun-Wang;Kim, Byoung-Kwon;Lee, Jae-Nam;Ryu, Deug-Hyun;Song, Yong-Kyu;Jung, Woo-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.497-500
    • /
    • 2008
  • This research carries out experiments for hydration exothermic rate and adiabatic temperature rise of concrete to examine the characteristics of the hydration heat of high flowing self-compacting concrete with a normal strength. As a result of the hydration exothermic rate experiment, the high flowing self-compacting concrete that used Lime stone powder and fly ash as polymers shows that its hydration heat amount reduces due to the reduction of unit cement. The result measured the adiabatic temperature rise of concrete presents that high flowing self-compacting concrete having lots of binder contents has a good performance in temperature reduction due to the effect of polymer and that triple adding high flowing self-compacting concrete has a similar temperature rise speed with conventional concrete. As a result of the research, high flowing self-compacting concrete shows a better temperature reduction performance for the binder content per unit than conventional concrete. In addition, it is judged that triple adding high flowing self-compacting concrete with a specified concrete strength 30 MPa is more beneficial in temperature reduction and early hydration heat than double adding high flowing self-compacting concrete.

  • PDF

Mathematical Modeling of Degree of Hydration and Adiabatic Temperature Rise (콘크리트의 수화도 및 단열온도상승량 예측모델 개발)

  • 차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.118-125
    • /
    • 2002
  • Hydration is the main reason for the growth of the material properties. An exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development of all material properties and the formation of microstructure should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of W/C ratio on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The tatter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration. In this study, the effects of chemical composition of cement, W/C ratio, temperature, and moisture conditions on the degree of hydration are considered. Parameters that can be used to indicate or approximate the real degree of hydration are liberated heat of hydration, amount of chemically bound water, and chemical shrinkage, etc. Thus, the degree of heat liberation and adiabatic temperature rise could be determined by prediction of degree of hydration.

Effect of Various Partial Replacements of Cement with Blast Furnace Slag and Different Placing Times on Thermal Properties of Mass Concrete and Modeling Work (타설시간차에 의한 고로슬래그 미분말의 치환율별 매스콘크리트의 온도특성)

  • Kim, Jong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.207-215
    • /
    • 2019
  • The aim of the research is analyzing the simple adiabatic temperature rising properties and the heat of hydration based on different placing timing of the mass concrete depending on various replacing ratios of blast furnace slag to comparative analyze the thermal cracking index and cracking possibility. As a result from the experiment, a suggested adiabatic temperature rising equation based on various blast furnace slag replacing ratios can be provide favorable correlation with over 0.99 of $R^2$ value by applying the initial induction period. With this relationship, more accurate prediction of the amount of the hydration heat rising and heating timing, and it is known that there is an approximately $13.1^{\circ}C$ of gap between plain concrete without blast furnace slag and concrete with 80 % of replacing blast furnace slag. To control the setting time and heat rising gap, the mix designs between top and bottom concrete casts were changed 15 cases, and D, E, H, I, and L models of controlling the heat of hydration showed 41.23 to $46.88^{\circ}C$ of core temperature and 0.98 to 1.27 of thermal cracking index. Therefore the cracking possibility was 15 to 52 % of favorable results of possibly controlling both the cracking due to the internal and external retainment and concrete temperature at early age.