• Title/Summary/Keyword: Adhesive base emulsion

Search Result 3, Processing Time 0.017 seconds

Synthesis of Acrylic Nonionic Reactive Emulsifier with Aromatic Ring and the Properties of Water-based Acryl Pressure Sensitive Adhesive (방향족 고리를 가지는 아크릴계 비이온 반응성 유화제 합성 및 이를 이용한 수성 점착제 물성 연구)

  • Yeom, Do-Young;Kim, Dong Hwan;Hwang, Gaeun;Hwang, Do-Hoon;Jung, Yu Jin
    • Journal of Adhesion and Interface
    • /
    • v.22 no.2
    • /
    • pp.31-38
    • /
    • 2021
  • In this study, a nonionic reactive emulsifier with aromatic and acryl group was synthesized by using polyoxyethylene(10) dodecylphenyl ether with 3-butenoic acid. The synthesized nonionic reactive emulsifier was confirmed by 1H-NMR and FT-IR. In addition, the reactive emulsifier synthesized in the preparation of aqueous acrylic adhesives base emulsion was used and the properties of the solid content, conversion, particle size distribution, peel strength and high temperature holding force were compared to those of nonionic emulsifiers without aromatic group. The particle size was distributed from 370 nm to 698 nm, and the peel strength were measured in the range of 1.507~1.802 kgf. The high temperature holding force of prepared adhesives base emulsion were measured in the range of 0.50~2.00 mm. Especially, in the result of synthesized nonionic reactive emulsifier with aromatic group, it was confirmed that high temperature holding force results were the most excellent than the case of using other nonionic reactive emulsifiers, and it can be useful for water-based acryl pressure sensitive adhesive.

Properties of St/BA Modified Cellular Lightweight Concrete as Sandwich Panel Core (샌드위치패널심재로 활용한 St/BA 개질 다공성 경량 콘크리트의 특성)

  • 강내민;노정식;도정윤;문경주;소양섭
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.31-34
    • /
    • 2003
  • Sandwich panel is composed of the facing sheets which support the external load, the cellular core with the low thermal conductivity and the adhesive agent to bond them. The cellular core was produced by binding lightweight cellular aggregates with cement and two types of acrylic base St/BA emulsion were added with a view to improving the workability ion due to high absorption of light weight aggregate and to develope more strength, respectively. This investigation is to comprehend the effect of the addition of two types of St/BA on thermal conductivity, calorific value and exhaustion content of noxious gas in addition re compressive and flexural strength. Flexural strength of the specimen made with St/BA-2 ranged 20kgf/cm2 to 25kgf/cm2 and was about 50% to 100% as high as that of the non-fiber specimen. Thermal conductivity was recorded from 2.0 to 3.0 kcal/mh$^{\circ}C$ and calorific value of St/BA modified specimen was much lower than that of commercial sandwich panel core of EPS and urethane. Careful caution has to be taken because generation of noxious gas such as CO, NO and SO2 tend to increase with addition of polymer cement ratio.

  • PDF

Study for Reducement of Polymerization Time and Improvement of Stability in Manufacturing Carboxylated Styrene-butadiene Latex (카르복실화 스티렌-부타디엔 라텍스의 중합시간 단축과 안정성 개선을 위한 연구)

  • Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.31-38
    • /
    • 2002
  • Polymerization of carboxylated styrene-butadiene latex takes longer time than that of acrylic emulsion due to delocalization of radical in butadiene unit having conjugated double bond. A latex stability is the most important properties owing to use intact without separating polymer from base latex. For reducing polymerization time without decreasing any properties of latex, carbon tetra-chloride which has been used as the most popular chain transfer agent was replaced to combination of tert-dodecylmercaptane and ${\alpha}$-methylstyrene dimer. The replacement yielded reducement or 2 hr in polymerization time. In the increment step, charge amount of acrylic acid was limited to 0.3 part to restrain viscosity enhancement. Just after initial step, addition of 0.1 part acrylamide prevent polymer chain from diffusing between two region followed by giving hardness and final good adhesive force to latex particles.