• Title/Summary/Keyword: Adhesion properties

Search Result 1,686, Processing Time 0.027 seconds

Surface characteristics of thermally treated titanium surfaces

  • Lee, Yang-Jin;Cui, De-Zhe;Jeon, Ha-Ra;Chung, Hyun-Ju;Park, Yeong-Joon;Kim, Ok-Su;Kim, Young-Joon
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.3
    • /
    • pp.81-87
    • /
    • 2012
  • Purpose: The characteristics of oxidized titanium (Ti) surfaces varied according to treatment conditions such as duration time and temperature. Thermal oxidation can change Ti surface characteristics, which affect many cellular responses such as cell adhesion, proliferation, and differentiation. Thus, this study was conducted to evaluate the surface characteristics and cell response of thermally treated Ti surfaces. Methods: The samples were divided into 4 groups. Control: machined smooth titanium (Ti-S) was untreated. Group I: Ti-S was treated in a furnace at $300^{\circ}C$ for 30 minutes. Group II: Ti-S was treated at $500^{\circ}C$ for 30 minutes. Group III: Ti-S was treated at $750^{\circ}C$ for 30 minutes. A scanning electron microscope, atomic force microscope, and X-ray diffraction were used to assess surface characteristics and chemical composition. The water contact angle and surface energy were measured to assess physical properties. Results: The titanium dioxide ($TiO_2$) thickness increased as the treatment temperature increased. Additional peaks belonging to rutile $TiO_2$ were only found in group III. The contact angle in group III was significantly lower than any of the other groups. The surface energy significantly increased as the treatment temperature increased, especially in group III. In the 3-(4,5-Dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide assay, after 24 hours of incubation, the assessment of cell viability showed that the optical density of the control had a higher tendency than any other group, but there was no significant difference. However, the alkaline phosphatase activity increased as the temperature increased, especially in group III. Conclusions: Consequently, the surface characteristics and biocompatibility increased as the temperature increased. This indicates that surface modification by thermal treatment could be another useful method for medical and dental implants.

Study on Polymerization Condition of Water-based Acrylic Adhesion (수분산성 아크릴계 점착제 중합 조건에 관한 연구)

  • Lee, Haeng Ja;Jang, Suk Hee;Chang, Sang Mok;Kim, Jong Min
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.609-614
    • /
    • 2010
  • In this study, emulsion polymerizations for synthesizing acrylic pressure-sensitive adhesive(PSA) were carried out using 2-ethylhexyl acrylate(2-EHA), n-butyl acrylate(n-BA), methyl metacrylate(MMA) as fundamental monomers and acrylic acid(AAc) as a functional monomer in the presence of anionic SLS (sodium lauryl sulfate). To obtain the optimized synthetic condition in the polymerization, we analyzed the polymerization variables such as the effect of surfactant concentration and hydrophilic lipophilic values(HLB). At the same time, the final adhesive properties were also analyzed by the function of the initiator concentration and buffer concentration. In the results, the most stable emulsion was obtained at the surfactant concentrations between 3 and 5 wt%. It was also determined the effect of HLB value of nonionic surfactant and the initiator concentrations on the gel content. Stable emulsion is obtained using the surfactant having HLB value of 12.3. The rate of emulsion polymerization was increased at the initiator concentration greater than 1 wt%, but the stability of the emulsion was decreased. Finally, the effect of the buffer concentrations on the pH and the conversion of the acrylic emulsion product were experimentally measured. At the sodium bicarbonate concentration above 0.4 wt%, the buffer infulence was apparent. The buffer effect was fully acceptable at the concentrations between 0.6 and 0.8 wt% regardless of the monomer composition.

Experimental Study on Long-term Characteristics of Sprayable Waterproofing Membrane (차수용 박층 멤브레인의 장기 성능 변화에 관한 실험 연구)

  • Choi, Soon-Wook;Kim, Jintae;Choi, Myung-Sik;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.15-23
    • /
    • 2019
  • The sprayable waterproofing membrane is a recently introduced material in the civil engineering field, and is a material that sprays and attaches a single phase or two phase powder or liquid material to a surface to be covered using a pump and nozzle. Although the material properties are gradually reported through researches, there is a lack of studies on long-term performance compared to concrete materials used with the membranes. In this study, the long-term performance of materials was estimated using the Arrhenius equation. The temperature conditions used in this study were 65℃, 80℃ and 95℃, and the temperature was maintained with the membrane attached to the concrete block for long-term behavior. Then the membranes were tested for tensile strength and adhesion strength in the order of 30, 90, 150, 200, and 300 days. The long-term performance of the material was determined from a long-term perspective by estimating the activation energy by the Arrhenius equation. Consequently, the time to reach 50% of the performance standard could be estimated by long-term test.

Synthesis and Characterization of The Electrolessly Deposited Co(Re,P) Film for Cu Capping Layer (무전해 도금법으로 제조된 Co(Re,P) capping layer제조 및 특성 평가)

  • Han, Won-Kyu;Kim, So-Jin;Ju, Jeong-Woon;Cho, Jin-Ki;Kim, Jae-Hong;Yeom, Seung-Jin;Kwak, Noh-Jung;Kim, Jin-Woong;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.61-67
    • /
    • 2009
  • Electrolessly deposited Co (Re,P) was investigated as a possible capping layer for Cu wires. 50 nm Co (Re,P) films were deposited on Cu/Ti-coated silicon wafers which acted as a catalytic seed and an adhesion layer, respectively. To obtain the optimized bath composition, electroless deposition was studied through an electrochemical approach via a linear sweep voltammetry analysis. The results of using this method showed that the best deposition conditions were a $CoSO_4$ concentration of 0.082 mol/l, a solution pH of 9, a $KReO_4$ concentration of 0.0003 mol/l and sodium hypophosphite concentration of 0.1 mol/L at $80^{\circ}C$. The thermal stability of the Co (Re,P) layer as a barrier preventing Cu was evaluated using Auger electron spectroscopy and a Scanning calorimeter. The measurement results showed that Re impurities stabilized the h.c.p. phase up to $550^{\circ}C$ and that the Co (Re,P) film efficiently blocked Cu diffusion under an annealing temperature of $400^{\circ}C$ for 1hr. The good barrier properties that were observed can be explained by the nano-sized grains along with the blocking effect of the impurities at the fast diffusion path of the grain boundaries. The transformation temperature from the amorphous to crystal structure is increased by doping the Re.

Effects of Moxi-tar Herbal Acupuncture at Cheonchu (ST25) on Crohn's Disease Induced by TNBS in Mices (천추(天樞) 상응부위에 구진약침(灸津藥針) 자극(刺戟)이 TNBS로 유도(誘導)된 크론병에 미치는 영향)

  • Kim, Yong-Tae;Ahn, Seong-Hun;Kim, Jae-Hyo;Sohn, In-Chul
    • Korean Journal of Acupuncture
    • /
    • v.25 no.2
    • /
    • pp.159-177
    • /
    • 2008
  • Objectives : Crohn's disease is a severe chronic inflammation that is treated mainly by immunosuppression, which often has serious side effects. There is need to develop new therapeutic methods or drugs that have few side effects in order to treat this disease. Acupuncture with Moxi-tar at Cheonchu (ST25) has anti-inflammatory properties, but the mechanism of its anti-inflammatory actions is unclear. We investigated the protective effects and speculated the mechanisms of acupuncture with Moxi-tar at ST25 on trinitrobenzene sulfonic acid (TNBS) induced colitis in mice which is a well known Crohn's disease animal model. Methods : 5 % TNBS was treated at day 1 and day 7 into rectum of mice. To investigate therapeutic effects of acupuncture with Moxi-tar at ST25, acupuncture was carried out on day 3, and day 6. For the data analysis, we observed macroscopic and microscopic findings of the colon. Weight and width of the colon, degree of damage, changes of body weight, and myeloperoxygenase (MPO) activity were checked. For analysing protein expression, we carried out immunohistochemical staining and Western blot. For analysing mRNA expression, RT-PCR was carried out. Results : TNBS induced damages on the colon of mice, while acupuncture of Moxi-tar at ST25 suppressed TNBS mediated damages similar to those on the colons of mice in the control (not treated with TNBS) group. The average body weight of TNBS treated mice (77.4%) was decreased compared with that of the control mice (105%), and acupuncture with Moxi-tar at ST25 suppressed the loss of body weight caused by TNBS (from 77.4% to 95.3%). TNBS induced infiltration of immune cells in all layers of the colon while acupuncture with Moxi-tar at ST25 suppressed infiltration of immune cells caused by TNBS. Furthermore, acupunctured with Moxi-tar at ST25 suppressed macro-, micro- colonic damages caused by TNBS. Acupunctured with Moxi-tar at ST25 dramatically improved the clinical and histopathological symptoms such as the increase in weight of the distal colon and the MPO activity in TNBS-induced colitis. Acupuncture with Moxi-tar at ST25 down-regulated the nuclear transcription factor kappa B ($NF-{\kappa}B$) activity and suppressed tumor necrosis factor-a (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-1${\beta}$), and intracellular adhesion molecule-1 (ICAM-1) expressions caused by TNBS. Conclusions : Acupuncture with Moxi-tar at ST25 helps recovery from the TNBS-induced colonic damage by down-regulation of $NF-{\kappa}B$ activity and suppressing of TNF-${\alpha}$, IL-1${\beta}$, and ICAM-1 expressions. This may be an important method for the treatment of Crohn's disease.

  • PDF

A Study on the Engineering Characteristics of Soil - Fly Ash - Bentonite Liner (플라이애시-벤토나이트 혼합 점토차수재의 공학적 특성에 관한 연구)

  • Lee, Changhwan;Kim, Myeongkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.21-29
    • /
    • 2008
  • As household and industrial wastes continue to rapidly increase every year, the demands for landfill sites are also increasing. However, the construction of landfill sites causes many problems due to the high costs of liners, while the leachate from the landfills generates secondary contamination of surrounding lands and groundwater. The purpose of this study is to determine the proper mixing ratio to meet the liner conditions (must be less than $1{\times}10^{-7}cm/sec$), using the local soil as the main material and using fly ash, bentonite, and cement as the mixing materials. The possibility of using this mixture as the liner for landfill sites was examined. To determine the proper mixing ratio, this study conducted basic physical properties tests, compaction tests, consolidation tests, and uniaxial compression tests. It was found that the higher the ratio of bentonite, the lower the coefficient of permeability, and the higher the ratio of fly ash, the higher the coefficient of permeability. The reason for this is that, while bentonite expands and fills pores, fly ash cannot fill the pores because the particles have a round shape and do not have adhesion. In conclusion, the optimum coefficient of permeability that meets the landfill liner condition was obtained when the ratio of bentonite was 15% or higher. If fly ash was mixed, the landfill liner condition was met when the ratio of bentonite was 15% or higher and the ratio of fly ash was 20% or lower.

  • PDF

EFFECTS OF CARCINOGENICITY AND GROWTH RAGULATORY FACTORS IN HUMAN EPITHELIAL CELLS EXPOSED WITH TOBACCO-SPECIFIC N-NITROSAMINE (흡연특이성 N-Nitrosamine이 인체상피세포의 발암화와 성장조절인자에 미치는 영향)

  • Kim, Seok-Soon;Kim, Chin-Soo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.2
    • /
    • pp.129-134
    • /
    • 2001
  • Since NNK is one of the most abundant tobacco-specific alkaloids and a strong carcinogenic nitrosamine, it has been used for evaluating a potential of carcinogenicity in the animal models. The present study has attempted to examine the potential of carcinogenicity of NNK in human epithelial cells, from which the cell type the most of cancers including oral cancer and nasal cavity cancer are originated. The cellular model used for the study is a human keratinocyte cell system immortalized by Ad12-SV40 hybrid virus. The cellular system has successfully been used for the carcinogenicity studies because of its limitless life span, epithelial morphology and nontumorigenicity. When cells were treated with a variety of NNK concentrations, levels of saturation density and soft agar colony formation were increased in a dose-dependent fashion. Colonies of large cell aggregates were above 5 at the higher doses. The results indicate that exposure of human cells with NNK induced loss of contact inhibition and increases of anchorage independence and cellular adhesion, which are typical characteristics of the neoplatically transformed cells. When cells were exposed with 100uM NNK for 2hr, mRNA levels of IL-1 and PAI-2 were increased in a dose-dependent manner, but expression of TGF- 1 was not affected. While expression of growth regulatory factors were altered with a short-term exposure, there was no alteration of these factors in the NNK-transformed cells. However, mRNA levels of fibronectin were increased both in the short-term treatment and in the transformation. The results suggest that altered expression of extracellular matrix such as fibronectin following short-term exposure might be fixed in the genome and these altered properties be continuously transfered throughout the cell division. Western blot analysis showed a translocation of PKC- from cytosolic fraction to the particulate fraction, indicating a possible role of NNK in the signal transduction pathway. The present study provided an evidence that NNK in the smoking may be associated with epithelial origin cancer such as oral and nasal cavity cancers. In addition, this study suggested that altered expression of extracellular matrix and PKC may play an important role in the carcinogenic mechanism of NNK.

  • PDF

RESTORATION OF MAXILLARY PRIMARY INCISORS USING POLYETHYLENE FIBER-REINFORCED POST (폴리에틸렌 섬유 강화형 포스트를 이용한 상악 유전치의 수복)

  • Yun, Hyo-Jin;Park, Ho-Won;Lee, Ju-Hyun;Seo, Hyun-Woo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.4
    • /
    • pp.526-531
    • /
    • 2010
  • Early childhood caries which mainly affect maxillary anterior area, defined as 'the presence of 1 or more decayed, missing, or filled tooth surfaces in any primary tooth in a child 71 months of age or younger'. Extraction of teeth when early childhood caries affected in maxillary primary incisors often develops progressively, result in severe destruction of crowns, acute or chronic pulpitis, and periapical abscess formation. Maxillary primary incisors are need to preserve as possible, because the early loss of maxillary primary incisors may lead to various functional, esthetical, and psychological problems. It is necessary to the availability of an easy to perform technique capable of providing efficient, durable, functional, and esthetic restorative methods. Polyethylene fiber-reinforced post can be used in strengthen of composite resins that is esthetic and good physical and mechanical properties. $Ribbond^{(R)}$ is made from an polyethylene fiber, has numerous usages, its surface is treated to enhance adhesion to resins, ease of manipulation, relatively cost effective. We report this case, had restored of maxillary primary incisors with severe coronal destruction due to affecting severe early childhood caries, using polyethylene fiber-reinforced posts, composite resin cores, and celluloid crowns. We could obtain good result of treatment.

Si and Mg doped Hydroxyapatite Film Formation by Plasma Electrolytic Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.195-195
    • /
    • 2016
  • Titanium and its alloys are widely used as implants in orthopedics, dentistry and cardiology due to their outstanding properties, such as high strength, high level of hemocompatibility and enhanced biocompatibility. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. The aim of this study is to research Si and Mg doped hydroxyapatite film formation by plasma electrolytic oxidation. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. A Si and Mg coating was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Electrochemical Characteristics of Zn and Si Ion-doped HA Films on Ti-6Al-4V by PEO Treatment

  • Lim, Sang-Gyu;Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.199-199
    • /
    • 2016
  • Commercially pure titanium (cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Electrochemical deposition method is an attractive technique for the deposition of hydroxyapatite (HAp). However, the adhesions of these coatings to the Ti surface needs to be improved for clinical used. Plasma electrolyte oxidation (PEO) enables control in the chemical com position, porous structure, and thickness of the $TiO_2$ layer on Ti surface. In addition, previous studies h ave concluded that the presence of $Ca^{+2}$ and ${PO_4}^{3-}$ ion coating on porous $TiO_2$ surface induced adhesion strength between HAp and Ti surface during electrochemical deposition. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study electrochemical characteristcs of Zn and Si coating on Ti-6Al-4V by PEO treatment. The coating process involves two steps: 1) formation of porous $TiO_2$ on Ti-6Al-4V at high potential. A pulsed DC power supply was employed. 2) Electrochemical tests were carried out using potentiodynamic and AC impedance methoeds. The morphology, the chemical composition, and the micro-structure an alysis of the sample were examined using FE-SEM, EDS, and XRD. The enhancements of the HAp forming ability arise from $Si/Zn-TiO_2$ surface, which has formed the reduction of the Si/Zn ions. The promising results successfully demonstrate the immense potential of $Si/Zn-TiO_2$ coatings in dental and biomaterials applications.

  • PDF