• Title/Summary/Keyword: Adhesion Properties

Search Result 1,666, Processing Time 0.033 seconds

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF

Anticariogenic Properties of the Extract of Saururus chinensis (삼백초 추출물의 항치아우식 효과)

  • Lee, Da-Hong;Yu, Hyeon-Hee;Jung, Su-Young;Moon, Hae-Dalma;Park, Ki-Bong;Cho, Soo-Min;Jeon, Byung-Hun;Kim, In-Sook;You, Yong-Ouk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.647-651
    • /
    • 2007
  • It has been well established that S. mutans is the major etiological agent in dental caries, one of the most common oral diseases worldwide. The present study was designed to investigate the effect of Saururus chinensis (S. chinensis) ethanol extracts on the growth, acid production, biofilm formation, adhesion, and insoluble glucan synthesis of S. mutans. The ethanol extracts of S. chinensis showed concentration dependent inhibitory activity against the growth and acid production of S. mutans, and produced significant inhibition at the concentration of 0.025, 0.05, 0.1, 0.2 and 0.4 mg/ml compared to the control group. The extracts markedly inhibited S. mutans adherence to HA treated with saliva, and cell adherence was repressed by more than 80% at the concentration of 0.05 mg/ml and complete inhibition was observed at the concentration of 0.4 mg/ml. On the activity of glucosyltransferase which synthesizes water insoluble glucan form sucrose, ethanol extract of S. chinensis showed more than 10% inhibition over the concentration of 0.025 mg/ml. The synthesis of insoluble glucan was decreased in the presence of 0.025 ${\sim}$ 0.4 mg/ml of the ethanol extract of S. chinensis. Our research strongly suggested S. chinensis was a promising natural product for the prevention of dental caries.

Friction Behavior of High Velocity Oxygen Fuel (HVOF) Thermal Spray Coating Layer of Nano WC-Co Powder

  • Cho, T.Y.;Yoon, J.H.;Kim, K.S.;Fang, W.;Joo, Y.K.;Song, K.O.;Youn, S.J.;Hwang, S.Y.;Chun, H.G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.170-174
    • /
    • 2007
  • High Velocity Oxygen Fuel (HVOF) thermal spray coating of nano size WC-Co powder (nWC-Co) has been studied as one of the most promising candidate for the possible replacement of the traditional hard plating in some area which causes environmental and health problems. nWC-Co powder was coated on Inconel 718 substrates by HVOF technique. The optimal coating process obtained from the best surface properties such as hardness and porosity is the process of oxygen flow rate (FR) 38 FMR, hydrogen FR 57 FMR and feed rate 35 g/min at spray distance 6 inch for both surface temperature $25^{\circ}C\;and\;500^{\circ}C$. In coating process a small portion of hard WC decomposes to less hard $W_2C$, W and C at the temperature higher than its decomposition temperature $1,250^{\circ}C$ resulting in hardness decrease and porosity increase. Friction coefficient increases with increasing coating surface temperature from 0.55-0.64 at $25^{\circ}C$ to 0.65-0.76 at $500^{\circ}C$ due to the increase of adhesion between coating and counter sliding surface. Hardness of nWC-Co is higher or comparable to those of other hard coatings, such as $Al_2O_3,\;Cr,\;Cr_2O_3$ and HVOF Tribaloy 400 (T400). This shows that nWC-Co is recommendable for durability improvement coating on machine components such as high speed spindle.

Polydopamine Coating Behaviors on the Acrylic Acid Grafted-Nanofibers (아크릴산이 그라프트된 나노섬유에서의 폴리도파민 코팅)

  • Shin, Young Min;Kim, Woo-Jin;Park, Jong-Seok;Gwon, Hui-Jeong;Nho, Young-Chang;Lim, Youn-Mook
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.371-376
    • /
    • 2011
  • The surface property of the materials used in tissue engineering application has been essential to regulate cellular behaviors by directing their adhesion on the materials. To modulate surface property of the synthetic biodegradable materials, a variety of surface modification techniques have used to introduced surface functional groups or bioactive molecules, recently polydopamine coating method have been introduce as a facile modification method which can be coated on various materials such as polymers, metals, and ceramics regardless of their surface property. However, there are no reports about the degree of polydopamine coating on the materials with different hydrophilicity. In the present study, we prepared acrylic acid grafted nanofibrous meshes using electron-beam irradiation, and then coated meshes with polydopamine. Polydopamine successfully coated on the all meshes, both properties of acrylic acid and polydopamine were detected on the meshes. In addition, the degree of polydopamine deposition on the materials has been altered according to surface hydrophilicity, which was approximately 8-times greater than those on the non-modified materials. In conclusion, dual effect from the acrylic acid grafting and polydopamine may give a chance as a alternative tool in tissue engineering application.

Improved Biocompatibility of Intra-Arterial Poly-L-Lactic Acid Stent by Tantalum Ion Implantation : 3-Month Results in a Swine Model

  • Kim, Kangmin;Park, Suhyung;Park, Jeong Hwan;Cho, Won-Sang;Kim, Hyoun-Ee;Lee, Sung-Mi;Kim, Jeong Eun;Kang, Hyun-Seung;Jang, Tae-Sik
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.6
    • /
    • pp.853-863
    • /
    • 2021
  • Objective : Biodegradable poly-L-lactic acid (PLLA) with a highly biocompatible surface via tantalum (Ta) ion implantation can be an innovative solution for the problems associated with current biodegradable stents. The purpose of this study is to develop a Taimplanted PLLA stent for clinical use and to investigate its biological performance capabilities. Methods : A series of in vitro and in vivo tests were used to assess the biological performance of bare and Ta-implanted PLLA stents. The re-endothelialization ability and thrombogenicity were examined through in vitro endothelial cell and platelet adhesion tests. An in vivo swine model was used to evaluate the effects of Ta ion implantation on subacute restenosis and thrombosis. Angiographic and histologic evaluations were conducted at one, two and three months post-treatment. Results : The Ta-implanted PLLA stent was successfully fabricated, exhibiting a smooth surface morphology and modified layer integration. After Ta ion implantation, the surface properties were more favorable for rapid endothelialization and for less platelet attachment compared to the bare PLLA stent. In an in vivo animal test, follow-up angiography showed no evidence of in-stent stenosis in either group. In a microscopic histologic examination, luminal thrombus formation was significantly suppressed in the Ta-implanted PLLA stent group according to the 2-month follow-up assessment (21.2% vs. 63.9%, p=0.005). Cells positive for CD 68, a marker for the monocyte lineage, were less frequently identified around the Ta-implanted PLLA stent in the 1-month follow-up assessments. Conclusion : The use of a Ta-implanted PLLA stent appears to promote re-endothelialization and anti-thrombogenicity.

Structural Adjustment of In-Situ Surface-Modified Silica Matting Agent and Its Effect on Coating Performance

  • Xu, Qingna;Ji, Tongchao;Tian, Qingfeng;Su, Yuhang;Niu, Liyong;Li, Xiaohong;Zhang, Zhijun
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850137.1-1850137.9
    • /
    • 2018
  • A series of silica surface-capped with hexamethyldisilazane (denoted as $H-SiO_2$) were prepared by liquid-phase in-situ surface-modification method. The as-obtained $H-SiO_2$ was incorporated into acrylic amino (AA) baking paint to obtain AA/$H-SiO_2$ composite extinction paints and/or coatings. $N_2$ adsorption-desorption tests were conducted to determine the specific surface area as well as pore size and pore volume of $H-SiO_2$. Moreover, the effects of $H-SiO_2$ matting agents on the physical properties of AA paint as well as the gloss and transmittance of AA-based composite extinction coatings were investigated. Results show that $H-SiO_2$ matting agents possess a large specific surface area and pore volume than previously reported silica obtained by liquid-phase method. Besides, they have better dispersibility in AA baking paint than the unmodified silica. Particularly, $H-SiO_2$ with a silica particle size of $6.7{\mu}m$ and the dosage of 4% (mass fraction) provides an extinction rate of 95.2% and a transmittance of 79.3% for the AA-based composite extinction coating, showing advantages over OK520, a conventional silica matting agent. Along with the increase in the silica particle size, $H-SiO_2$ matting agents cause a certain degree of increase in the viscosity of AA paint as well as a noticeable decrease in the gloss of the AA-based composite extinction coating, but they have insignificant effects on the hardness and adhesion to substrate of the AA-based composite coatings. This means that $H-SiO_2$ matting agents could be well applicable to preparing low-viscosity and low-gloss AA-based matte coatings.

Preparation and Physical Properties of Aqueous Polyurethane Based on Mono Methyl Ether for Skin Layer Coating (Skin layer 코팅에 사용되는 Mono Methyl Ether 기반 수성 폴리우레탄의 제조 및 물리적 성질)

  • Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.524-530
    • /
    • 2019
  • In this study, polyether polyol polypropylene glycol and isophorone diisocyanate (IPDI) were synthesized based on polyrupopylene mono methyl eher (PM) for the synthesis of water - soluble polyurethane for coating on leather skin layer. After synthesis of prepolymer, PM was added at $40^{\circ}C$ to 1M, 2M, 3M, and 4M to inhibit the viscosity rise, and neutralization reaction and chain extension reaction were carried out to prepare polyurethane samples. According to the measurement results of the tensile strength, elongation and adhesive strength of the prepared sample, the tensile strength was 2.109 kgf / mm2 for PM 1M, 1.721kgf / mm2 for 4M, elongation was 496% for PM 1M, 522% for 4M, adhesion was 1.114 kgf / cm for PM 1M and 0.99 kgf / cm for 4M.

Material Properties of Fast hardening Polymer Mortar by Fine Aggregate Types and Replacement Ratio (잔골재 종류 및 치환율에 의한 속경성 폴리머 모르타르의 재료 특성)

  • Shin, Seung-Bong;Kim, Gyu-Yong;Nam, Jeong-Soo;Shin, Kyoung-Su;Lee, Bo-Kyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.145-151
    • /
    • 2019
  • The Physical performance of use materials was evaluated to improve durability of fast-paced repair mortar used at rapid construction sites. The fastening performance and basic performance were evaluated by substituting ferronickel grinding slag residues, rapid settlement, and EVA-based polymer for mortar. As a result, the compressive strength, flexural strength and adhesion strength were increased due to the use of FS Fine Aggregate and RS Fine Aggregate. The chloride ion promotion test of fast-polymer mortar kept the chloride inhibitory performance from 7 days to 28 days when fNS was used less than 50%. Durability degradation due to the use of FS Fine Aggregate and RS Fine Aggregate has not been found, and it is believed that further consideration of economic and long-term durability will be required for use as alternative Aggregate for construction and civil engineering.

Synthesis of Water-based Acryl Pressure Sensitive Adhesive for Skin Using Reactive Emulsifier (반응성 유화제를 이용한 피부용 수성 아크릴 점착제의 합성 및 특성)

  • Lee, Sang-Chul;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.352-357
    • /
    • 2019
  • In this study, a reactive emulsifier with vinyl groups was synthesized by using 3-butenoic acid and polyoxyethylene(20) stearyl ether. The synthesized reactive emulsifier was confirmed by FT-IR and $^1H-NMR$. In addition, the reactive emulsifier synthesized in the preparation of aqueous acrylic pressure sensitive adhesives was used and the properties of the respective pressure sensitive adhesives were compared to those of using commonly used nonionic emulsifiers. The solid content was measured in the range of 56.8~57.4%. In the case of the initial adhesion, the S20BA made with a reactive emulsifier was measured as $^{\sharp}13$. Peel strengths of the prepared adhesives were measured in the range of $0.66{\sim}1.05kg_f$ and the highest peel strength was observed for S20BA. As a result of the heat resistance test, S20BA showed the highest as $840^{\circ}C$. In order to evaluate the applicability of adhesives for skin, the pH value was measured as 7, neutral and also it was found to be non-irritation from primary skin irritation test results.

Study on the material properties and heating efficiency according to the internal surface coating of the brazed plate heat exchanger (BPHE) (접합 판형 열교환기(BPHE)의 내부 코팅에 따른 소재 특성 및 성능 평가에 관한 연구)

  • Jung, Hangchul;Yang, Hyunseok;Kim, Hyunjong;Park, Jongpo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.237-243
    • /
    • 2020
  • In this study, a silane-based coating was applied to improve corrosion resistance and thermal efficiency performance of a brazed plate heat exchanger (BPHE) composed of stainless plate and copper (Cu) brazing. Although the selected coating material was applied to the BPHE by evaluating the corrosion and contact angle according to the coating material, the result of the heat transfer performance evaluation showed that the thermal efficiency was lower than that of the uncoated BPHE. It was analyzed that the adhesion of the coating agent to the flow path inside the BPHE and the residual coating agent on the surface acted as heat resistance, preventing heat transfer. This is due to the structural characteristics of the BPHE in which a fine flow path exists inside, and it is believed that manufacturing after coating the surface of the flow path in advance in the manufacturing process of the BPHE can improve heat transfer performance.