• Title/Summary/Keyword: Adhesion Force

Search Result 472, Processing Time 0.05 seconds

Measurements of Adhesion Force of Micro-Sized Toner Particles Deposited on the Developing Roller Surface in a Non-contact type Laser Printer (비접촉 방식 레이저 프린터 현상롤러 위에 부착된 마이크로 토너 입자의 부착힘 측정)

  • Kim Sang-Yoon;Lee Dae-Young;Sheen Sowon;Eun Jong Moon;Hwang Jungho
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.75-80
    • /
    • 2005
  • Study for toner adhesion is known as an important role in electrophotography. In this research, a centrifugal detachment method was used to measure the adhesion force of several hundred particles simultaneously and to determine its sensitivity to particle size. For uncharged toner particles, we estimated the van der Waals force based on the centrifugal farce experiments. Then for charged toner particles, the centrifugal force experiments were carried out. The difference between the results for charged toner particles and the results for uncharged toner particles was compared with the image force calculated from a model which assumed that the toner charge was located at the center of the particle. In the calculations, experimental data obtained by E-SPART (Electrical- Single Particle Aerodynamic Relaxation Time) analyzer were used. The adhesion force of micro-sized toner particles deposited on the DR surface was found to be approximately 1${\~}$3 nN.

  • PDF

A Molecular Simulation on the Adhesion Control of Metal Thin Film-Carbon Nanotube Interface based on Thermal Wetting (Thermal wetting 현상이 탄소나노튜브-금속박막 계면의 응착력에 미치는 영향에 관한 분자 시뮬레이션 연구)

  • Sang-Hoon Lee;Hyun-Joon Kim
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.8-12
    • /
    • 2023
  • This study presents a molecular simulation of adhesion control between carbon nanotube (CNT) and Ag thin film deposited on silicon substrate. Rough and flat Ag thin film models were prepared to investigate the effect of surface roughness on adhesion force. Heat treatment was applied to the models to modify the adhesion characteristics of the Ag/CNT interface based on thermal wetting. Simulation results showed that the heat treatment altered the Ag thin film morphology by thermal wetting, causing an increase in contact area of Ag/CNT interface and the adhesion force for both the flat and rough models changed. Despite the increase in contact area, the adhesion force of flat Ag/CNT interface decreased after the heat treatment because of plastic deformation of the Ag thin film. The result suggests that internal stress of the CNT induced by the substrate deformation contributes in reduction of adhesion. Contrarily, heat treatment to the rough model increases adhesion force because of the expanded contact area. The contact area is speculated to be more influential to the adhesion force rather than the internal stress of the CNT on the rough Ag thin film, because the CNT on the rough model contains internal stress regardless of the heat treatment. Therefore, as demonstrated by simulation results, the heat treatment can prevent delamination or wear of CNT coating on a rough metallic substrate by thermal wetting phenomena.

Adhesion Strength Measurement of Rabbit Knee Chondrocyte (연골세포 부착력 평가)

  • Lee Kwon-Yong;Park Sang-Guk;Shin Daehwan;Park Jong-Chul
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.236-240
    • /
    • 2005
  • In order to prepare for the suitable surfaces of implants or medical devices, quantitative evaluation of adhesion between cells and biomaterials is essential. To better understand adhesion formation between cells and biomaterials, we used the cytodetachment technique which measures the adhesive force of a single cell through changing the, culture time and detachment speed. The results showed that the adhesive force could be affected by the culture time of cells on the surface of materials and the detachment speed. Moreover, there was a large discrepancy among the adhesion strength measured by similar techniques conducted on the different cells and substrates. It can be 'concluded that the variation of the force measurement technique can seriously alter the level of the force required to detach a cell on the surface of materials.

The Adhesion of Abrasive Particle during Poly-Si, TEOS and SiN CMP (Poly-Si, TEOS, SiN 막질의 CMP 공정 중의 연마입자 오염 특성 평가.)

  • Kim, Jin-Young;Hong, Yi-Kwan;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.561-562
    • /
    • 2006
  • The purpose of this study was to investigate the root cause of adhesion of silica and ceria particles during Poly-Si, TEOS, and SiN CMP process, respectively. The zeta-potentials of abrasive particles and wafers were observed negative surface charges in the alkaline solutions. SAC and STI patterned wafers have intermediate values of their composition surface's zeta potentials. The theoretical interaction force and adhesion force of silica and ceria particle were calculated in solution with acidic, neutral and alkaline pH. A stronger attractive force was calculated for silica and ceria particles on wafers in acidic solutions than in alkaline solutions. The theoretical interaction forces of the SAC and STI patterned wafers have intermediate values of their constitution wafer's values. The adhesion forces is observed lower values in alkaline solutions than in acidic solutions. And the ceria particle has lower adhesion than that of the silica particle.

  • PDF

Analysis of Nano-Tribophysics (Nano-Tribophysics 해석 기술)

  • 최덕현;황운봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.215-218
    • /
    • 2003
  • Nano-scale experiments for adhesion force and friction force were performed with AFM/FFM. In macro-scale, the friction coefficient is constant without relating to the change of contact area. However, many papers have indicated that in nano-scale, the friction coefficient is related to the contact area. Contact area would increase with the normal force. Therefore, in this study, we analyzed the trend of the friction coefficient of Si(100) and Mica according to the normal force and then. the contact area was calculated by JKR-theory. Results showed the friction coefficient was constant under 180 nm$^2$ contact area and over 180 nm$^2$ contact area, it was degraded. Moreover. the friction coefficient was constant according to the adhesion force.

  • PDF

Discussion of the relationship between adhesion force and braking force in slip condition (제동시 점착력과 제동력의 관계에 대한 고찰)

  • Kim, Young-Guk;Kim, Seog-Won;Mok, Jin-Yong;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1005-1011
    • /
    • 2007
  • The brake system of train must posses the large braking effort in order to stop the train safely within the limited traveling distance. But, the excessive braking effort has been deteriorated the ride comfort due to high level of deceleration and jerk, and sometimes occurred the skid, because the applied braking force exceeds the allowable adhesive force. This skid causes not only to increase the stopping distance but also to deteriorate the safety of train and damage the rail surface by wheel flat. In the present paper, the braking force for disc brake of Korea High Speed Train (HSR350x) was measured through on-line test and the adhesion force was estimated by using the analytic model in the skid condition. Also, we have discussed the relationship between the actual disc brake force and the adhesion force in real skid condition.

  • PDF

Studies on Adhesion Properties between Zinc-Coated Steel Cord and Adhesion Promoter-Containing Rubber Compound (아연 코팅된 스틸코드와 접착증진제가 적용된 고무 Compound와의 접착특성 연구)

  • Ko, Sang Min;Choi, Hee Seok;Son, Woo Jung;Kang, Sin Jung
    • Journal of Adhesion and Interface
    • /
    • v.15 no.2
    • /
    • pp.49-56
    • /
    • 2014
  • In this study, properties of adhesion between adhesion promoter-containing rubber compound and zinc coated steel cord was investigated. Cobalt salt, resorcinol formaldehyde resin (RF resin) and hexamethoxymethylmelamine (HMMM) were used to adhesion promoter. Since cobalt salts accelerate sulphidation rate of zinc at zinc coated steel cord surface, pullout force of rubber compound applying cobalt salts was increased compared to that of rubber compound without applying cobalt salts. Pullout force and rubber coverage of rubber compounds applying all adhesion promoters were superior because strong interlocking between rubber matrix increased modulus due to applying RF resin and HMMM and grown zinc sulfides at zinc coated steel cord surface.

Design of a Re-adhesion Controller using Fuzzy Logic with Estimated Adhesion Force Coefficient for Wheeled Robot (점착력 계수 추정을 이용한 이동 로봇의 퍼지 재점착 제어기 설계)

  • Kwon, Sun-Ku;Huh, Uk-Youl;Kim, Jin-Hwhan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.620-622
    • /
    • 2004
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and the floor decreases suddenly, the robot has a slip state. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. First of all, this paper shows that conventional PI control can not be applied to a wheeled robot of the light weigh. Secondly, reposed fuzzy logic applied by the Takagi-Sugeno model for the configuration of fuzzy sets. For the design of Takaki-Sugeno model and fuzzy rule, proposed algorithm uses FCM(Fuzzy c-mean clustering method) algorithm. In additionally, this algorithm controls recovered driving torque for the restrain the re-slip. The proposed fuzzy logic controller(FLC) is pretty useful with prevention of the slip phenomena through that compare fuzzy with PI control for the controller performance in the re-adhesion control strategy. These procedures are implemented using a Pioneer 2-DXE wheeled robot parameter.

  • PDF

Nanotribological Characteristics of Silicon Surfaces Modified by IBAD (IBAD로 표면개질된 실리콘 표면의 나노 트라이볼로지적 특성)

  • Park, Ji-Hyun;Yang, Seung-Ho;Kong, Ho-Seung;Jhang, Kyung-Young;Yoon, Eui-Sung
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Nano adhesion and friction between a $Si_{3}N_{4}$ AFM(atomic force microscope) tip and thin silver films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM and LFM(lateral force microscope) modes in various range of normal loads. Thin silver films deposited by IBAD (ion beam assisted deposition) on Si-wafer (100) and other Si-wafers of different surface roughness were used. Results showed that nano adhesion and friction decreased with the surface roughness. When the Si surfaces were coated by pure silver, the adhesion and friction decreased. But the adhesion and friction were not affected by the thickness of IBAD silver coating. As the normal force increased, the adhesion forces of bare Si-wafer and IBAD silver coating film remained constant, but the friction forces increased linearly. Test results suggested that the friction was mainly governed by the adhesion as long as the load was low.