• Title/Summary/Keyword: Adherend

Search Result 76, Processing Time 0.027 seconds

Design and Manufacturing of Composite Drive Shaft for Automobiles (자동차용 복합재료 드라이브샤프트 설계 및 성형 연구)

  • Kim, T.W.;Lee, S.K;Jun, E.J.;Kim, W.D.;Lee, D.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.109-117
    • /
    • 1993
  • A carbon/epoxy composite drive shaft used for the power transmission of the automobiles with steel joints. Compared with the metallic drive shaft, the composite one has the weight saving of 50% with equivalent torsional strength and fatigue characteristics. In this study, the filament winding technique for the composite tube and composite/metal joining technique are estabilished. The performance test of the drive shaft is carried out. The optimal condition of the surface roughness of the steel adherend was $1.5{{\mu}m}$ to $2.5{{\mu}m}$, and the optimal condition of the bonding thickness was 0.15mm. Maximum torque and torsional stiffness of the composite drive shaft manufactured by filament winding process were found to be $210kg{\cdot}m$ and $18.5kg{\cdot}m/deg$, respectively.

  • PDF

Effect of shear deformation on adhesive stresses in plated concrete beams: Analytical solutions

  • Touati, Mahmoud;Tounsi, Abdelouahed;Benguediab, Mohamed
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.337-355
    • /
    • 2015
  • In this scientific work, an improved analytical solution for adhesive stresses in a concrete beam bonded with the FRP plate is developed by including the effect of the adherend shear deformations. The analysis is based on the deformation compatibility approach where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The shear stress distribution is supposed to be parabolic across the depth of the adherends in computing the adhesive shear stress and Timoshenko's beam theory is employed in predicting adhesive normal stress to consider the shear deformation. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of adhesive stress distributions.

The Torque Transmission Capacities of the Adhesive Tubular Lap Joint (접착제로 접착된 원형 겹치기이음의 토크 전달특성 연구)

  • 최진호;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.85-92
    • /
    • 1994
  • With the wide application of fiber-reinforced composite meterial in aircraft space structures and robot arms, the design and manufacture of composite joints have become a very important research area because they are often the weakest areas in composite structure. In this paper, the torque transmission capacities of the adhesive tubular single lap joint and double lap joint were studied. The stress and torque transmission capacity of the adhesive joints were analyzed by the finite element method and compared to the experimental results. The torque capacity of the double lap joint was increased 2.7 times over that of the single lap joint. Also, the fatigue limit of the double lap joint was increased 16 times over that of the single lap joint.

Ultrasonic Scatter and Compensation of Interfacial Crack due to Thickness Variation of Dissimilar Bonded Components (이종 접합부재의 두께 변화에 따른 계면균열의 초음파 산란 보정)

  • Park, Sung-Il;Chung, Nam-Yong;Jin, Yoon-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.25-30
    • /
    • 2004
  • In this paper, the compensation of interfacial scatter due to adhesive layer and adherend thickness ratio variation was applied to improve measuring precision by calculating ultrasonic attenuation coefficient in the Al/Epoxy dissimilar bonded components. The optimum condition of theoretical value and experimental measuring accuracy by the ultrasonic method in the Al/Epoxy dissimilar bonded components have been investigated. From the experimental results, we proposed a measurement method of the interfacial crack lengths by the ultrasonic attenuation coefficient and discussed it.

  • PDF

Analyze of the interfacial stress in reinforced concrete beams strengthened with externally bonded CFRP plate

  • Hadji, Lazreg;Daouadji, T. Hassaine;Meziane, M. Ait Amar;Bedia, E.A. Adda
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.413-429
    • /
    • 2016
  • A theoretical method to predict the interfacial stresses in the adhesive layer of reinforced concrete beams strengthened with externally bonded carbon fiber-reinforced polymer (CFRP) plate is presented. The analysis provides efficient calculations for both shear and normal interfacial stresses in reinforced concrete beams strengthened with composite plates, and accounts for various effects of Poisson's ratio and Young's modulus of adhesive. Such interfacial stresses play a fundamental role in the mechanics of plated beams, because they can produce a sudden and premature failure. The analysis is based on equilibrium and deformations compatibility approach developed by Tounsi. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the reinforced concrete beam and bonded plate. The paper is concluded with a summary and recommendations for the design of the strengthened beam.

Type and Characteristics of Polymer-based Luting Materials (레진시멘트의 종류와 특성)

  • Kim, Ah-Jin;Bae, Ji-Myung
    • The Journal of the Korean dental association
    • /
    • v.53 no.3
    • /
    • pp.178-186
    • /
    • 2015
  • Dental polymer-based luting materials are classified into esthetic resin cement, adhesive resin cement and self-adhesive resin cement. Due to the different component of each type of resin cement, the preconditioning method of tooth surface and the steps are different from each type of resin cement. The pre-treatment of adherend (ceramic, resin and metal) surface also varies with the type of resin cement and the manufacturer. In this study, the characteristics of each type of resin cement, mechanical properties, indication and advantages were investigated. Through these, clinical tips on using resin cements were suggested.

Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis

  • Rabia, Benferhat;Daouadji, Tahar Hassaine;Abderezak, Rabahi
    • Advances in materials Research
    • /
    • v.9 no.4
    • /
    • pp.265-287
    • /
    • 2020
  • A theoretical method to predict the interfacial stresses in the adhesive layer of reinforced concrete beams strengthened with porous FRP plate is presented in this paper. The effect due to porosity is incorporated utilizing a new modified rule of mixture covering the porosity phases. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends. Remarkable effect of the porosity has been noted in the results. Indeed, the resulting interfacial stresses concentrations are considerably smaller than those obtained by other models which neglect the porosity effect. It was found that the interfacial stresses are highly concentrated at the end of the FRP plate, the minimization of the latter can be achieved by using porous FRP plate in particular at the end. It is also shown that the interfacial stresses of the RC beam increase with volume fraction of fibers, but decrease with the thickness of the adhesive layer.

Mechanical behavior of composite beam aluminum-sandwich honeycomb strengthened by imperfect FGM plate under thermo-mechanical loading

  • Bensatallah Tayeb;Rabahi Abderezak;Tahar Hassaine Daouadji
    • Coupled systems mechanics
    • /
    • v.13 no.2
    • /
    • pp.133-151
    • /
    • 2024
  • In this paper, an improved theoretical interfacial stress analysis is presented for simply supported composite aluminum- sandwich honeycomb beam strengthened by imperfect FGM plateusing linear elastic theory. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends, while all existing solutions neglect this effect. Remarkable effect of shear deformations of adherends has been noted in the results.It is shown that both the sliding and the shear stress at the interface are influenced by the material and geometry parameters of the composite beam. This new solution is intended for applicationto composite beams made of all kinds of materials bonded with a thin plate. Finally, numerical comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters.

Analysis of stress and stress intensity factor in bonded dissimilar materials by boundary element method (경계요소법을 이용한 이종재료 접착.접합재의 응력 및 응력세기계수 해석)

  • Yi, W.;Chung, N.Y.;Yu, Y.C.;Jeong, E.S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1357-1363
    • /
    • 1997
  • Currently it is increasing to use th bonded dissimilar materials in the various field of advanced engineering such as the highly rigid and lighter vehicle, plastic molding LSI package and metal/ceramic bonded joint. In spite of such a wide application of the bonded dissimilar materials, the evaluation method of the bonding strength has not been established yet. Therefore in this paper we analyze the interface crack problem by introducing fracture mechanics parameters as the basic research about estimating of the strength of adhesive joints. The variation of stress intensity factor according to the elastic modulus of adherend and thickness of bonded layer are investigated. Numerical results are based on the results of boundary element analysis of four different type butt joints subjected to uniaxial tension loading.

Effects of the Adhesive Thickness and Residual Thermal Stress on the Torque Capacity of Turbular Single Lap Joints (접착제의 두께와 열 응력에 따른 조인트의 토크 특성)

  • 최진호;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1841-1852
    • /
    • 1992
  • With the wide application of fiber-reinforced composite material in aircraft, space structures and robot arms, the design and manufacture of composite joints have become a very important research area because they are often the weakest areas in composite structures. In this study, the effects of the adhesive thickness, residual thermal stress on the torque capacity of the tubular single lap joints were studied. The torque capacity of the adhesive joints were experimentally determined and found to be inversely proprotional to the adhesive thickness. In order to match the experimental results to the theoretical analyses, the elastic-perfectly plastic material properties of the adhesive were used in the closed form solution. Also, the residual thermal stress of the joints were calculated by the finite element method and it was proved that the residual thermal stress could play an important role in the thick adhesive joints.