• Title/Summary/Keyword: Adenosine $A_1$-receptor

Search Result 173, Processing Time 0.033 seconds

Effects of N-acetylcysteine on the energy status and antioxidant capacity in heart and liver of cold-stressed broilers

  • Li, Chengcheng;Peng, Meng;Liao, Man;Guo, Shuangshuang;Hou, Yongqing;Ding, Binying;Wu, Tao;Yi, Dan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1444-1454
    • /
    • 2020
  • Objective: Cold stress induces oxidative damage and impairs energy status of broilers. N-acetylcysteine (NAC) exhibits antioxidant properties and modulates energy metabolism of animals. This study was conducted to investigate the effects of NAC on energy status and antioxidant capacity of heart and liver in the cold-stressed broilers. Methods: The experiment consisted of 4 treatments in a 2×2 factorial arrangement with two diets (basal diet or plus 0.1% NAC) and two ambient temperatures (thermoneutral [conventional ambient temperature] or cold stress [10℃±1℃ during days 15 to 42]). Results: No ascites were seen in cold-stressed broilers. NAC did not attenuate the impaired growth performance of stressed birds. However, NAC decreased plasma asparagine but increased aspartate levels in cold-stressed birds (p<0.05). NAC reduced hepatic adenosine triphosphate (ATP) but elevated adenosine diphosphate contents in unstressed birds (p<0.05). The hepatic ratio of adenosine monophosphate (AMP) to ATP was increased in birds fed NAC (p<0.05). NAC decreased plasma malondialdehyde (MDA) level and cardiac total superoxide dismutase (T-SOD) activity in unstressed birds, but increased hepatic activities of T-SOD, catalase and glutathione peroxidase in stressed birds (p<0.05). NAC down-regulated hepatic AMP-activated protein kinase but up-regulated cardiac heme-oxigenase mRNA expression in stressed birds, and decreased expression of hepatic peroxisome proliferator-activated receptor coactivator-1α as well as hypoxia-inducible factor-1α in liver and heart of birds. Conclusion: Dietary NAC did not affect energy status but enhanced the hepatic antioxidant capacity by increasing the activities of antioxidant enzymes in cold-stressed broilers.

Anti-Adipogenic Activity of Ailanthoidol on 3T3-L1 Adipocytes

  • Park, Ju-Hyung;Jun, Jong-Gab;Kim, Jin-Kyung
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.62-69
    • /
    • 2014
  • Previous our study demonstrated that ailanthoidol (3-deformylated 2-arylbenzo[b]furan), a neolignan from Zanthoxylum ailanthoides or Salvia miltiorrhiza Bunge, is a novel anti-inflammatory agent. In this investigation, we examined the anti-adipogenic effect of ailanthoidol. Our data showed that ailanthoidol suppressed lipid droplet formation and adipocyte differentiation in 3T3-L1 cells. Treatment of the 3T3-L1 adipocytes with ailanthoidol resulted in an attenuation of the releases of leptin and interleukin-6. The expression of peroxisome proliferator-activated receptor $(PPAR){\gamma}$ and CCAAT/enhancer-binding protein $(C/EBP){\alpha}$, the central transcriptional regulators of adipogenesis, was decreased by treatment with ailanthoidol. Additionally, ailanthoidol treatment increased the phosphorylation levels of 5' adenosine monophosphate-activated protein kinase. These results suggest that ailanthoidol effectively suppresses adipogenesis and that it exerts its role mainly through the significant down-regulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$ expression. Our findings provide important insights into the mechanisms underlying the anti-adipogenic activity of ailanthoidol.

Thrombus Formation Inhibition of Esculetin through Regulation of Cyclic Nucleotides on Collagen-Induced Platelets

  • Lee, Dong-Ha
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.270-276
    • /
    • 2021
  • Physiological agents trigger a signaling process called "inside-out signaling" and activated platelets promote adhesion, granule release, and conformational changes of glycoprotein IIb/IIIa (αIIb/β3). Activated αIIb/β3 interacts with fibrinogen and initiates a second signaling step called "external signaling". These two signaling pathways can cause hemostasis or thrombosis, and thrombosis is a possible medical problem in arterial and venous vessels, and platelet-mediated thrombosis is a major cause of cardiovascular disease (CVD). Therefore, modulating platelet activity is important for platelet-mediated thrombosis and cardiovascular disease. Esculetin is a coumarin-based physiologically active 6,7-dihydroxy derivative known to have pharmacological activity against obesity, diabetes, renal failure and CVD. Although some studies have confirmed the effects of esculetin in human platelet activation and experimental mouse models, it is not clear how esculetin has antiplatelet and antithrombotic effects. We confirmed the effect and mechanism of action of escultein on human platelets induced by collagen. As a result, esculetin decreased Ca2+ recruitment through upregulation of inositol 1, 4, 5-triphosphate receptor. In addition, esculetin upregulates cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)-dependent pathways and inhibits fibrinogen binding and thrombus contraction. Our results demonstrate the antiplatelet effect and antithrombotic effect of esculetin in human platelets. Therefore, we suggest that esculetin could be a potential phytochemical for the prevention of thrombus-mediated CVD.

The Inhibitory Effects of Glycyrrhiza uralensis on human Platelet Aggregation and Thrombus Formation

  • Seung Na Ko;Ji Won Son;Gyu Ri Kim;Min Seon Kim;Yea Jin Lee;Seung Ju Kim;Ji Hyeon Shin;Da In Jo;Woo Young Bok;Hye Gyo Oh;Hyuk-Woo Kwon
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.242-248
    • /
    • 2023
  • Platelets are activated at the sites of vascular injury by a number of molecules, including adenosine diphosphate, collagen and thrombin. The full platelet aggregation is absolutely essential for the normal hemostasis. Glycyrrhiza glabra is a well-known medicinal herb that grows in various parts of the world and is known to have various effects such as antioxidant, anti-inflammatory, anti-atherogenic, anti-osteoporotic and skin-whitening. However, the platelet inhibitory effect of Glycyrrhiza glabra extract (GGE) has not been identified. In this study, we investigated if GGE inhibited platelet aggregation. We observed that GGE inhibited collagen-induced platelet aggregation, Ca2+ mobilization, and thromboxane A2 generation. In addition, GGE suppressed phosphorylation of phosphatidylinositol-3 kinase (PI3K), Akt and elevated phosphorylation of inositol 1,4,5-trisphosphate receptor (IP3R), vasodilator stimulated phosphoprotein (VASP). Taken together, GGE showed strong antiplatelet effects and may be used to block platelet-mediated cardiovascular diseases.

Green tea and type 2 diabetes

  • Park, Jae-Hyung;Bae, Jae-Hoon;Im, Sung-Soon;Song, Dae-Kyu
    • Integrative Medicine Research
    • /
    • v.3 no.1
    • /
    • pp.4-10
    • /
    • 2014
  • Green tea and coffee consumption have been widely popular worldwide. These beverages contain caffeine to activate the central nervous system by adenosine receptor blockade, and due to the caffeine, addiction or tolerance may occur. In addition to this caffeine effect, green tea and coffee consumption have always been at the center of discussions about human health, disease, and longevity. In particular, green tea catechins are involved in many biological activities such as antioxidation and modulation of various cellular lipid and proteins. Thus, they are beneficial against degenerative diseases, including obesity, cancer, cardiovascular diseases, and various inflammatory diseases. Some reports also suggest that daily consumption of tea catechins may help in controlling type 2 diabetes. However, other studies have reported that chronic consumption of green tea may result in hepatic failure, neuronal damage, and exacerbation of diabetes, suggesting that interindividual variations in the green tea effect are large. This review will focus on the effect of green tea catechins extracted from the Camellia sinensis plant on type 2 diabetes and obesity, and the possible mechanistic explanation for the experimental results mainly from our laboratory. It is hoped that green tea can be consumed in a suitable manner as a supplement to prevent the development of type 2 diabetes and obesity.

Effects of mulberry fruit juice powder on inflammation and microRNA-132/143 regulation in 3T3-L1 adipocytes (뽕나무 열매 착즙 분말이 3T3-L1 지방세포의 염증 및 microRNA-132/143 조절에 미치는 영향)

  • Lee, Mak-Soon;Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.54 no.5
    • /
    • pp.448-458
    • /
    • 2021
  • Purpose: Mulberry (Morus alba L.) fruit is widely grown in Asia and consumed as fresh fruit, jam, and juices. The fruit has beneficial health effects, including anti-diabetic, anti-tumor, and anti-obesity properties. However, the mechanisms by which mulberry fruit juice powder (MJ) regulates inflammatory microRNAs (miRs) are not yet known. This study investigated the effect of mulberry fruit juice powder on the regulation of inflammation and miR-132/143 during 3T3-L1 adipocyte differentiation. Methods: The 3T3-L1 cells were induced to differentiate for 2 days and then treated with various concentrations of MJ for 7 days. Cytotoxicity was determined by evaluating cell viability using a water-soluble tetrazolium salt-8 assay kit. Intracellular lipid accumulation was evaluated by oil-red O staining. The levels of the expression of genes involved in adipogenesis and inflammation, and miR-132/143 were measured by quantitative real-time polymerase chain reactions. Results: MJ showed no cytotoxic effect on 3T3-L1 adipocytes at concentrations below 100 ng/mL. Intracellular lipid accumulation was reduced by MJ treatment at concentrations of 100 ng/mL. The messenger RNA (mRNA) levels of proliferator-activated receptor-γ, cytosine-cytosine-adenosine-adenosine-thymidine/enhancer-binding protein-α, and adipocyte protein 2, which are involved in adipogenesis, were suppressed by MJ. A reduction was also seen in mRNA levels of genes related to the inflammatory response, such as tumor necrosis factor-α, interleukin-6, monocyte chemoattractant protein-1, and inducible nitric oxide synthase. The expression of the inflammatory miR-132 and miR-143 was also decreased by MJ. Conclusion: These results suggest that MJ may suppress adipogenesis and inflammation through the regulation of miR-132/143 expression in 3T3-L1 adipocytes. Thus, MJ may be useful as a food agent that prevents obesity-associated inflammation.

Antiobesity Activity of Chrysanthemum zawadskii Methanol Extract (구절초 추출물의 항비만 활성)

  • Park, Jung Ae;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.299-306
    • /
    • 2015
  • Chrysanthemum zawadskii, a herbaceous perennial plant belonging to the Compositae, grows wild in Asian countries, including Japan, China, and Korea. The biological, antioxidative, anti-inflammatory, and antibacterial activities of C. zawadskii have been reported, its antiobesity activity has not been elucidated. In the present study, the effect of C. zawadskii methanol extract (CZME) on pancreatic lipase enzyme activity, adipocyte differentiation, and adipogenesis was investigated using an in vitro assay and a cell model system. CZME effectively suppressed lipase enzyme activity in a dose-dependent manner. CZME also inhibited insulin, dexamethasone, 3-isobutyl-1-methylxanthine (MDI)-induced adipocyte differentiation, lipid accumulation, and the level of triglyceride in 3T3-L1 preadipocytes in a dose-dependent manner, without cytotoxicity. The antiobesity effect of CZME might be modulated by gene and protein expression of cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins (C/EBP) α, C/EBPβ, and the peroxisome proliferator-activated receptor γ (PPAR γ). CZME also triggered lipolysis in a dose-dependent manner in MDI-induced 3T3-L1 preadipocytes. Taken together, these results provide important new insights into the antiobesity activities of C. zawadskii, showing that they involve pancreatic lipase inhibition, as well as antiadipogenic and lipolysis effects. CZME might be a promising source in the field of nutraceuticals. However, the active compounds that confer the antiobesity activities of CZME need to be identified.

ATP and Purinergic Receptor Agonists Stimulate the Mitogen-Activated Protein Kinase Pathway and DNA Synthesis in Mouse Mammary Epithelial Cells

  • Yuh In-Sub
    • Reproductive and Developmental Biology
    • /
    • v.28 no.4
    • /
    • pp.211-219
    • /
    • 2004
  • The effects of adenosine 5'-triphosphate (ATP) and ATP analogs, P/sub 2y/ purinoceptor agonists, on growth of normal mouse mammary epithelial cells (NMuMG) were examined. Cells were plated onto 24 well plates in DMEM supplemented with 10 % fetal calf serum. After serum starvation for 24 hours, ATP, P/sub 2y/ purinoceptor agonists (AdoPP[NH]P, ATP-α-S, ATP-γ-S, β, γ-me-ATP and 2me-S-ATP), P/sub 2u/ purinoceptor agonist (UTP) and P/sub 2y/ purinoceptor antagonists (Reactive Blue 2, more selective to P/sub 2y/ receptor than PPADS; PPADS) were added. DNA synthesis was estimated as incorporation of 3H-thymidine into DNA (1 hour pulse with 1 μ Ci/ml, 18~19 hours after treatment). ATP, Adopp[NH]P, ATP-α-S or ATP-γ-S, significantly increased DNA synthesis at 1, 10 and 100 μM concentrations with dose-dependency (P<0.05), and the maximum responses of ATP and ATP analogs were shown at 100 μM concentration (P<0.05). The potency order of DNA synthesis was ATP≥ATP- γ -S>Adopp [NH]P>ATP-α-S. β, γ -me-ATP, 2me-S-ATP and UTP did not increase DNA synthesis. In autoradiographic analysis of percentage of S-phase cells, similar results were observed to those of DNA synthesis. Addition of 1, 10 or 100 μM Reactive Blue 2 or PPADS significantly decreased ATP (100 μM)-induced DNA synthesis, however, PPADS was less effective than Reactive Blue 2. In Elvax 40P implant experiment, ATP directly stimulated mammary endbud growth in situ suggesting the physiological regulator of ATP in mammary growth. ATP 100 μM rapidly increased MAPK activity, reaching a maximum at 5 min and then gradually decreasing to the base level in 30 min. ATP analogs, Adopp[NH]P and ATP-γ-S also increased MAPK activity, however, β, γ-me-ATP and 2me-S-ATP did not. The inhibitor of the upstream MAPK kinase (MEK), PD 98059 (25 μM), effectively reduced ATP (100 μM) or EGF(10 ng/ml, as positive control)-induced MAPK activity and DNA synthesis (P<0.05). These results indicate that ATP-induced DNA synthesis was prevented from the direct inhibition of MAPK kinase pathway. Overall results support the hypothesis that the stimulatory effects of normal mouse mammary epithelial growth by addition of ATP or ATP analogs are mediated through mammary tissue specific P/sub 2y/ purinoceptor subtype, and MAPK activation is necessary for the ATP-induced cell growth.

Cellular Mechanism of Nicotine-mediated Intracellular Calcium Homeostasis in Primary Culture of Mouse Cerebellar Granule Cells (니코틴의 마우스 소뇌과립세포내 칼슘의 항상성 조절기전)

  • Kim, Won-Ki;Pae, Young-Sook
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.13-21
    • /
    • 1996
  • Intracellular calcium concentration ($[Ca^{2+}]_i$) may play a crucial role in a variety of neuronal functions. Here we report that in primary culture of mouse cerebellar granule cells nicotinic acetylcholine receptors (nAChRs) are expressed in a specific developmental stage and involved in the regulation of intracellular calcium homeostasis. Nicotine-mediated calcium responses were measured using $^{45}Ca^{2+}$ or fluorometrically using the calcium-sensitive fluorescent dye fura-2. Maximal uptake of $^{45}Ca^{2+}$ evoked by nicotine in mouse cerebellar granule cells were revealed $8{\sim}12$ days in culture. In contrast, nicotine did not alter the basal $^{45}Ca^{2+}$ uptake in cultured glial cells. In cerebellar granule cells nicotine-evoked $^{45}Ca^{2+}$ uptake was largely blocked by the NMDA receptor antagonists. Glutamate pyruvate transaminase (GPT). which removes endogenous glutamate, also prevented nicotine effects, implying the indirect involvement of glutamate in nicotine-mediated calcium responses. Fluorometric studies using fura-2 showed two phases of nicotine-evoked $[Ca^{2+}]_i$ rises: the initial rising phase and the later plateau phase. Interestingly, the NMDA receptor antagonists and GPT appeared to inhibit only the later plateau phase of nicotine-evoked $[Ca^{2+}]_i$ rises. The present results imply that nicotine mediated $^{45}Ca^{2+}$ uptake and $[Ca^{2+}]_i$ rises are attributed to the calcium fluxes through both nAchRs and NMDA receptors in a time-dependent manner. Consequently, nAChRs may play an important role in neuronal development by being expressed in a specific developmental stage and regulating the intracellular calcium homeostasis.

  • PDF

The Anti-Obesity Effect of Smilax china Extract (토복령 추출물의 항비만 활성)

  • Park, Jung Ae;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.354-360
    • /
    • 2014
  • In this study, the anti-obesity activity of Smilax china methanol extract (SCME) was evaluated using a pancreatic lipase enzyme inhibition assay, and a cell culture model system. Results indicated that, SCME effectively inhibited pancreatic lipase enzyme activity in a dose-dependent manner. Furthermore, SCME significantly suppressed insulin, dexamethasone, 3-isobutyl-1-methylxanthine-induced adipocyte differentiation, lipid accumulation, and triglyceride contents on 3T3-L1 preadipocytes, in a dose-dependent manner. The anti-adipogenic effect was modulated by cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins (C/EBP) ${\alpha}$, $C/EBP{\beta}$, and the peroxisome proliferator-activated receptor ${\gamma}$ gene and protein expressions. Moreover, SCME triggered lipolysis effects dose-dependently on adipocyte. Taken together, these results provide an important new insight into SCME, indicating that it possesses anti-obesity activity through pancreatic lipase inhibition, anti-adipogenic and lipolysis effects. SCME may therefore be utilized as a promising source in the field of nutraceuticals. The identification of active compounds that confer the anti-obesity activities of SCME may be a logical next step.